Outline

- Metropolis-Hastings algorithm
- Independence proposal
- Random-walk proposal
 - Optimal tuning parameter
 - Binomial example
 - Normal example
 - Binomial hierarchical example
Let

- $p(\theta|y)$ be the target distribution and
- $\theta^{(t)}$ be the current draw from $p(\theta|y)$.

The Metropolis-Hastings algorithm performs the following:

1. propose $\theta^* \sim g(\theta|\theta^{(t)})$
2. accept $\theta^{(t+1)} = \theta^*$ with probability $\min\{1, r\}$ where

$$r = r(\theta^{(t)}, \theta^*) = \frac{p(\theta^*|y)/g(\theta^*|\theta^{(t)})}{p(\theta^{(t)}|y)/g(\theta^{(t)}|\theta^*)} = \frac{p(\theta^*|y)}{p(\theta^{(t)}|y)} \frac{g(\theta(t)|\theta^*)}{g(\theta^*|\theta(t))}$$

otherwise, set $\theta^{(t+1)} = \theta^{(t)}$.
Suppose we only know the target up to a normalizing constant, i.e.

\[p(\theta | y) = \frac{q(\theta | y)}{q(y)} \]

where we only know \(q(\theta | y) \).

The Metropolis-Hastings algorithm performs the following

1. propose \(\theta^* \sim g(\theta | \theta^{(t)}) \)
2. accept \(\theta^{(t+1)} = \theta^* \) with probability \(\min\{1, r\} \) where

\[
 r = r(\theta^{(t)}, \theta^*) = \frac{p(\theta^* | y) g(\theta^{(t)} | \theta^*)}{p(\theta^{(t)} | y) g(\theta^* | \theta^{(t)})} = \frac{q(\theta^* | y) / q(y)}{q(\theta^{(t)} | y) / q(y)} \frac{g(\theta^{(t)} | \theta^*)}{g(\theta^* | \theta^{(t)})} = \frac{q(\theta^* | y) g(\theta^{(t)} | \theta^*)}{q(\theta^{(t)} | y) g(\theta^* | \theta^{(t)})}
\]

otherwise, set \(\theta^{(t+1)} = \theta^{(t)} \).
Two standard Metropolis-Hastings algorithms

- **Independent Metropolis-Hastings**
 - Independent proposal, i.e. $g(\theta|\theta^{(t)}) = g(\theta)$

- **Random-walk Metropolis**
 - Symmetric proposal, i.e. $g(\theta|\theta^{(t)}) = g(\theta^{(t)}|\theta)$ for all $\theta, \theta^{(t)}$.
Independence Metropolis-Hastings

Let

- \(p(\theta|y) \propto q(\theta|y) \) be the target distribution,
- \(\theta^{(t)} \) be the current draw from \(p(\theta|y) \), and
- \(g(\theta|\theta^{(t)}) = g(\theta) \), i.e. the proposal is independent of the current value.

The **independence Metropolis-Hastings algorithm** performs the following

1. propose \(\theta^* \sim g(\theta) \)
2. accept \(\theta^{(t+1)} = \theta^* \) with probability \(\min\{1, r\} \) where

\[
r = \frac{q(\theta^*|y)/g(\theta^*)}{q(\theta^{(t)}|y)/g(\theta^{(t)})} = \frac{q(\theta^*|y)}{q(\theta^{(t)}|y)} \cdot \frac{g(\theta^{(t)})}{g(\theta^*)}
\]

otherwise, set \(\theta^{(t+1)} = \theta^{(t)} \).
Intuition through examples

- Proposed values:
 - proposed = −1
 - proposed = 0
 - proposed = 1

- Current values:
 - current = −1
 - current = 0
 - current = 1

- Acceptance:
 - FALSE
 - TRUE

- Value:
 - current
 - proposed

- Distribution:
 - proposal
 - target

- Parameters:
 - theta
 - y

- Graphs showing the proposal and target distributions for different proposed values, with current and proposed values marked.

Jarad Niemi (STAT544@ISU)
Example: Normal-Cauchy model

Let \(Y \sim N(\theta, 1) \) with \(\theta \sim Ca(0, 1) \) such that the posterior is

\[
p(\theta|y) \propto p(y|\theta)p(\theta) \propto \frac{\exp(-(y-\theta)^2/2)}{1+\theta^2}
\]

Use \(N(y, 1) \) as the proposal, then the Metropolis-Hastings acceptance probability is the \(\min\{1, r\} \) with

\[
r = \frac{q(\theta^*|y)g(\theta(t))}{q(\theta(t)|y)g(\theta^*)} = \frac{\exp(-(y-\theta^*)^2/2)/1+(\theta^*)^2}{\exp(-(y-\theta(t))^2/2)/1+(\theta(t))^2} \cdot \frac{\exp(-(\theta(t)-y)^2/2)}{\exp(-(\theta^*-y)^2/2)}
\]

\[
= \frac{1+(\theta(t))^2}{1+(\theta^*)^2}
\]
Example: Normal-Cauchy model
Example: Normal-Cauchy model
Need heavy tails

Recall that
- rejection sampling requires the proposal to have heavy tails and
- importance sampling is efficient only when the proposal has heavy tails.

Independence Metropolis-Hastings also requires heavy tailed proposals for efficiency since if \(\theta^{(t)} \) is
- in a region where \(p(\theta^{(t)}|y) >> g(\theta^{(t)}) \), i.e. target has heavier tails than the proposal, then
- any proposal \(\theta^* \) such that \(p(\theta^*|y) \approx g(\theta^*) \), i.e. in the center of the target and proposal,

will result in

\[
r = \frac{g(\theta^{(t)})}{p(\theta^{(t)}|y)} \frac{p(\theta^*|y)}{g(\theta^*)} \approx 0
\]

and few samples will be accepted.
Need heavy tails - example

Suppose $\theta | y \sim Ca(0, 1)$ and we use a standard normal as a proposal. Then
Need heavy tails
Random-walk Metropolis

Let

- $p(\theta | y) \propto q(\theta | y)$ be the target distribution,
- $\theta^{(t)}$ be the current draw from $p(\theta | y)$, and
- $g(\theta^* | \theta^{(t)}) = g(\theta^{(t)} | \theta^*)$, i.e. the proposal is symmetric.

The **Metropolis algorithm** performs the following

1. propose $\theta^* \sim g(\theta | \theta^{(t)})$
2. accept $\theta^{(t+1)} = \theta^*$ with probability $\min\{1, r\}$ where

$$
r = \frac{q(\theta^* | y) \cdot g(\theta^{(t)} | \theta^*)}{q(\theta^{(t)} | y) \cdot g(\theta^* | \theta^{(t)})} = \frac{q(\theta^* | y)}{q(\theta^{(t)} | y)}
$$

otherwise, set $\theta^{(t+1)} = \theta^{(t)}$.

This is also referred to as random-walk Metropolis.
Stochastic hill climbing

Notice that \(r = \frac{q(\theta^*|y)}{q(\theta^{(t)}|y)} \) and thus will accept whenever the target density is larger when evaluated at the proposed value than it is when evaluated at the current value.

Suppose \(\theta|y \sim N(0,1) \), \(\theta^{(t)} = 1 \), and \(\theta^* \sim N(\theta^{(t)}, 1) \).
Example: Normal-Cauchy model

Let $Y \sim N(\theta, 1)$ with $\theta \sim Ca(0, 1)$ such that the posterior is

$$p(\theta|y) \propto p(y|\theta)p(\theta) \propto \frac{\exp(-(y-\theta)^2/2)}{1 + \theta^2}$$

Use $N(\theta^{(t)}, \nu^2)$ as the proposal, then the acceptance probability is the

$$r = \frac{q(\theta^*|y)}{q(\theta^{(t)}|y)} = \frac{p(y|\theta^*)p(\theta^*)}{p(y|\theta^{(t)})p(\theta^{(t)})}.$$

For this example, let $\nu^2 = 1$.
Example: Normal-Cauchy model

Random-walk Metropolis

Random-walk Metropolis (poor starting value)
Random-walk tuning parameter

Let $p(\theta|y)$ be the target distribution, the proposal is symmetric with scale v^2, and $\theta^{(t)}$ is (approximately) distributed according to $p(\theta|y)$.

- If $v^2 \approx 0$, then $\theta^* \approx \theta^{(t)}$ and
 \[r = \frac{q(\theta^*|y)}{q(\theta^{(t)}|y)} \approx 1 \]
 and all proposals are accepted, but $\theta^* \approx \theta^{(t)}$.

- As $v^2 \to \infty$, then $q(\theta^*|y) \approx 0$ since θ^* will be far from the mass of the target distribution and
 \[r = \frac{q(\theta^*|y)}{q(\theta^{(t)}|y)} \approx 0 \]
 so all proposed values are rejected.

So there is an optimal v^2 somewhere. For normal targets, the optimal random-walk proposal variance is $2.4^2 Var(\theta|y)/d$ where d is the dimension of θ which results in an acceptance rate of 40% for $d = 1$ down to 20% as $d \to \infty$.
Random-walk with tuning parameter that is too big and too small

Let \(y|\theta \sim N(\theta, 1) \), \(\theta \sim Ca(0, 1) \), and \(y = 1 \).
Let $Y \sim Bin(n, \theta)$ and $\theta \sim Be(1/2, 1/2)$, thus the posterior is

$$p(\theta|y) \propto \theta^{y-0.5}(1-\theta)^{n-y-0.5}I(0 < \theta < 1).$$

To construct a random-walk Metropolis algorithm, we choose the proposal

$$\theta^* \sim N(\theta^{(t)}, 0.4^2)$$

and accept, i.e. $\theta^{(t+1)} = \theta^*$ with probability $\min\{1, r\}$ where

$$r = \frac{p(\theta^*|y)}{p(\theta^{(t)}|y)} = \frac{(\theta^*)^{y-0.5}(1-\theta^*)^{n-y-0.5}I(0 < \theta^* < 1)}{(\theta^{(t)})^{y-0.5}(1-\theta^{(t)})^{n-y-0.5}I(0 < \theta^{(t)} < 1)}$$

otherwise, set $\theta^{(t+1)} = \theta^{(t)}$.
Binomial model

```r
n = 10000
log_q = function(theta, y=3, n=10) {
  if (theta<0 | theta>1) return(-Inf)
  (y-0.5)*log(theta)+(n-y-0.5)*log(1-theta)
}
current = 0.5  # Initial value
samps = rep(NA,n)
for (i in 1:n) {
  proposed = rnorm(1, current, 0.4)  # tuning parameter is 0.4
  logr = log_q(proposed)-log_q(current)
  if (log(runif(1)) < logr) current = proposed
  samps[i] = current
}
length(unique(samps))/n  # acceptance rate
[1] 0.3746
```
Normal model

Assume

\[Y_i \sim_{\text{ind}} N(\mu, \sigma^2) \quad \text{and} \quad p(\mu, \sigma) \propto Ca^+(\sigma; 0, 1) \]

and thus

\[
p(\mu, \sigma | y) \propto \left[\prod_{i=1}^{n} \sigma^{-1} \exp \left(-\frac{1}{2\sigma^2} (y_i - \mu)^2 \right) \right] \frac{1}{1+\sigma^2} I(\sigma > 0) \\
= \sigma^{-n} \exp \left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^{n} y_i^2 - 2\mu n \bar{y} + \mu^2 \right] \right) \frac{1}{1+\sigma^2} I(\sigma > 0)
\]

Perform a random-walk Metropolis using a normal proposal, i.e. if \(\mu^{(t)} \) and \(\sigma^{(t)} \) are the current values for \(\mu \) and \(\sigma \), then

\[
\left(\begin{array}{c} \mu^* \\ \sigma^* \end{array} \right) \sim N \left(\left[\begin{array}{c} \mu^{(t)} \\ \sigma^{(t)} \end{array} \right], S \right)
\]

where \(S \) is the tuning parameter.
Adapting the tuning parameter

Recall that the optimal random-walk tuning parameter (if the target is normal) is \(2.4^2 \text{Var}(\theta|y)/d\) where \(\text{Var}(\theta|y)\) is the unknown posterior covariance matrix. We can estimate \(\text{Var}(\theta|y)\) using the sample covariance matrix of draws from the posterior.

Proposed automatic adapting of the Metropolis-Hastings tuning parameter:

1. Start with \(S_0\). Set \(b = 0\).
2. Run \(M\) iterations of the MCMC using \(2.4^2 S_b/d\).
3. Set \(S_{b+1}\) to the sample covariance matrix of all previous draws.
4. If \(b < B\), set \(b = b + 1\) and return to step 2. Otherwise, throw away all previous draws and go to step 5.
5. Run \(K\) iterations of the MCMC using \(2.4^2 S_B/d\).
Random-walk Metropolis

Normal model

R code for Metropolis-Hastings

n = 20
y = rnorm(n)
sum_y2 = sum(y^2)
nybar = mean(y)
log_q = function(x) {
 if (x[2]<0) return(-Inf)
}

B = 10
M = 100

samps = matrix(NA, nrow=B*M, ncol=2)
a_rate = rep(NA, B)

Initialize
S = diag(2) # S_0
current = c(0,1)
R code for Metropolis-Hastings - Adapting

```r
# Adapt
for (b in 1:B) {
  for (m in 1:M) {
    i = (b-1)*M+m

    proposed = mvrnorm(1, current, 2.4^2*S/2)

    logr = log_q(proposed) - log_q(current)
    if (log(runif(1)) < logr) current = proposed
    samps[i,] = current
  }
  a_rate[b] = length(unique(samps[1:i,1]))/length(samps[1:i,1])
  S = var(samps[1:i,])
}

a_rate

[1] 0.0300000 0.2700000 0.3566667 0.4000000 0.4240000 0.4333333 0.4200000 0.4175000 0.4166667 0.4270000

var(samps) # S_B

[,1] [,2]
[1,] 0.04898222 0.00255292
[2,] 0.00255292 0.02365873
```
R code for Metropolis-Hastings - Adapting

```r
samps = as.data.frame(samps); names(samps) = c("mu","sigma"); samps$iteration = 1:nrow(samps)
ggplot(melt(samps, id.var='iteration', variable.name='parameter'), aes(x=iteration, y=value)) +
  geom_line() +
  facet_wrap(~parameter, scales='free') +
  theme_bw()
```

![Graph showing the evolution of mu and sigma over iterations](image-url)
R code for Metropolis-Hastings - Inference

```r
# Final run
K = 10000
samps = matrix(NA, nrow=K, ncol=2)
for (k in 1:K) {
  proposed = mvrnorm(1, current, 2.4^2*S/2)
  logr = log_q(proposed) - log_q(current)
  if (log(runif(1)) < logr) current = proposed
  samps[k,] = current
}
length(unique(na.omit(samps[,1])))/length(na.omit(samps[,1])) # acceptance rate
```

[1] 0.3947
R code for Metropolis-Hastings - Inference
Hierarchical binomial model

Recall the hierarchical binomial model

\[Y_i \overset{ind}{\sim} Bin(n_i, \theta_i), \quad \theta_i \overset{ind}{\sim} Be(\alpha, \beta), \quad p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2} \]

and after marginalizing out the \(\theta_i \)

\[Y_i \overset{ind}{\sim} Beta-binomial(n_i, \alpha, \beta), \quad p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}I(a > 0)I(b > 0) \]

Thus the posterior is

\[
p(\alpha, \beta | y) \propto \left[\prod_{i=1}^{n} \frac{B(\alpha + y_i, \beta + n_i - y_i)}{B(\alpha, \beta)} \right] (\alpha + \beta)^{-5/2}I(a > 0)I(b > 0) \]

where \(B(\cdot) \) is the beta function.

We can perform exactly the same adapting procedure, but now using this posterior as the target distribution.
Beta-binomial hyperparameter posterior

![Correlation of alpha and beta](image)

Corr: 0.984
The Metropolis-Hastings algorithm, samples \(\theta^* \sim g(\cdot | \theta(t)) \) and sets \(\theta(t+1) = \theta^* \) with probability equal to \(\min\{1, r\} \) where

\[
 r = \frac{q(\theta^*|y) \, g(\theta(t)|\theta^*)}{q(\theta(t)|y) \, g(\theta^*|\theta(t))}
\]

and otherwise sets \(\theta(t+1) = \theta(t) \).

There are two common Metropolis-Hastings proposals:

- independent proposal: \(g(\theta^*|\theta(t)) = g(\theta^*) \)
- random-walk proposal: \(g(\theta^*|\theta(t)) = g(\theta(t)|\theta^*) \)

Independent proposals suffer from the same heavy-tail problems as rejection sampling proposals.

Random-walk proposals require tuning of the random walk parameter.