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Background Random variables

Random variables

From: http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html
Definition

A random variable is a function that associates a unique numerical value
with every outcome of an experiment.

Definition

A discrete random variable is one which may take on only a countable
number of distinct values such as 0, 1, 2, 3, 4,... Discrete random
variables are usually (but not necessarily) counts.

Definition
A continuous random variable is one which takes an infinite number of
possible values. Continuous random variables are usually measurements.
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Background Random variables

Random variables

Examples:
@ Discrete random variables

o Coin toss: Heads (1) or Tails (0)

o Dieroll: 1,2,3,4,5 0r6

e Number of Ovenbirds at a 10-minute point count
o RNAseq feature count

@ Continuous random variables
o Pig average daily (weight) gain
e Corn yield per acre
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Background Random variables

Statistical notation

Let Y be 1 if the coin toss is heads and 0 if tails, then
Y ~ Bin(n, p)

which means
Y is a binomial random variable with n trials and probability of
success p

For example, if Y is the number of heads observed when tossing a fair coin

ten times, then Y ~ Bin(10,0.5).

Later we will be constructing 100(1 — «)% confidence intervals, these
intervals are constructed such that if n of them are constructed then
Y ~ Bin(n,1 — «) will cover the true value.
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Background Random variables

Statistical notation

Let Y; be the average daily (weight) gain in pounds for the ith pig, then
Y % N, o)

which means
Y; are independent and identically distributed normal (Gaussian)
random variables with expected value E[Y;] = u and variance
V[Y;i] = 02 (standard deviation ).

For example, if a litter of pigs is expected to gain 2 Ibs/day with a
standard deviation of 0.5 Ibs/day and the knowledge of how much one pig
gained does not affect what we think about how much the others have

gained, then Y; i N(2,0.52).
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Background Normal distribution

Normal (Gaussian) distribution

A random variable Y has a normal distribution, i.e. Y ~ N(u,0?), with
mean 4 and variance o2 if draws from this distribution follow a bell curve
centered at y with spread determined by o

Probability density function
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t-distribution
t-distribution

A random variable Y has a t-distribution, i.e. Y ~ t,, with degrees of

freedom v if draws from this distribution follow a similar bell shaped
pattern:

Probability density function

N(0,1)
—_—t3

fy)
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t-distribution
As v — o0, then t, LA N(0,1), i.e. as the degrees of freedom increase, a t

distribution gets closer and closer to a standard normal distribution, i.e.
N(0,1). If v > 30, the differences is negligible.

Probability density function
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t-distribution
t critical value
Definition

If T ~t,, at,(1— «a/2)critical value is the value such that
P(T<t,(1—a/2))=1—a/2(or P(T > t,(1 —a)) =a/2).

Probability density function ts

f(t)

0.9 0.1

T
1.475884

t
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Cedar-apple rust

Cedar-apple rust is a (non-fatal) disease that affects apple trees. Its most obvious
symptom is rust-colored spots on apple leaves. Red cedar trees are the immediate
source of the fungus that infects the apple trees. If you could remove all red cedar
trees within a few miles of the orchard, you should eliminate the problem. In the
first year of this experiment the number of affected leaves on 8 trees was counted;
the following winter all red cedar trees within 100 yards of the orchard were

removed and the following year the same trees were examined for affected leaves.

@ Statistical hypothesis:
Ho: Removing red cedar trees increases or maintains the same mean
number of rusty leaves.

Hi: Removing red cedar trees decreases the mean number of rusty leaves.

@ Statistical question:
What is the expected reduction of rusty leaves in our sample between

year 1 and year 2 (perhaps due to removal of red cedar trees)?
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Data

Here are the data

library(plyr)

y1 = c(38,10,84,36,50,35,73,48)
y2 = c(32,16,57,28,55,12,61,29)
data.frame(yearl=yl, year2=y2, diff=yl-y2)

leaves
leaves

yearl year2 diff

38
10
84
36
50
35
73
48

0N O WN R

6
-6
27

summarize (leaves, n=length(diff), mean=mean(diff), sd=sd(diff))

n mean

sd

18 10.5 12.2

Is this a statistically significant difference?
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Assumptions

Let

@ Y7; be the number of rusty leaves on tree j in year 1

@ Y5; be the number of rusty leaves on tree j in year 2
Assume

iid
D; = Y1j — Yaj = N(,0?)

Then the statistical hypothesis test is
Ho: n=0 (1 <0)
Hi: p>0

while the statistical question is 'what is u?’
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Paired t-test pvalue

Test statistic o
(=D
~ SE(D)

where SE(D) = s/+/n with
@ n being the number of observations (differences),

@ s being the sample standard deviation of the differences, and
e D being the average difference.

If Hp is true, then u =0 and t ~ t,_1. The pvalue is P(t,—1 > t) since
this is a one-sided test. By symmetry, P(t,—1 > t) = P(th—1 < —t).

For these data,

D =10.5,SE(D) = 4.31, t; = 2.43, andp = 0.02
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Confidence interval for

The 100(1-)% confidence interval has lower endpoint

D — ty,_1(1 — a)SE(D)

and upper endpoint at infinity

For these data at 95% confidence, t7(0.9) = 1.89 and thus the lower
endpoint is

10.5—-1.89 x 4.31 =2.33

So we are 95% confident that the true difference in the number of rusty
leaves is greater than 2.33.
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75
SAS code for paired t-test

DATA leaves;
INPUT tree yearl year2;
DATALINES;

38
10
84
36
50
35
73
48

0 ~NO O WN -

32
16
57
28
55
12
61
29

PROC TTEST DATA=leaves SIDES=U;
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75
SAS output for paired t-test

The TTEST Procedure

Difference:

N Mean Std Dev

8 10.5000 12.2007

Mean 95% CL Mean

10.5000 2.3275 Infty
df

7

Jarad Niemi (lowa State)

o
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yearl - year2

Std Err Minimum Maximum

4.3136 -6.0000 27.0000

Std Dev 957 CL Std Dev
12.2007 8.0668 24.8317
Value Pr >t

2.43 0.0226
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75
R output for paired t-test

t.test(leaves$yearl, leaves$year2, paired=TRUE, alternative="greater")

Paired t-test

data: leaves$yearl and leaves$year2
t = 2.434, df = 7, p-value = 0.02257
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
2.328 Inf
sample estimates:
mean of the differences
10.5
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Statistical Conclusion

Removal of red cedar trees within 100 yards is associated with a significant
reduction in rusty apple leaves (paired t-test t;=2.43, p=0.023). The
mean reduction in rust color leaves is 10.5 [95% Cl (2.33,00)].

Jarad Niemi (lowa State) Inference Using t-Distributions September 8, 2014 18 / 42



Two-sample t-test

Do Japanese cars get better mileage than American cars?

@ Statistical hypothesis:

Hyp: Mean mpg of Japanese cars is the same as mean mpg of American cars.
Hi: Mean mpg of Japanese cars is different than mean mpg of American
cars.

@ Statistical question:

What is the difference in mean mpg between Japanese and American
cars?

@ Data collection:
o Collect a random sample of Japanese/American cars
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o-sample t-test

mpg = read.csv("mpg.csv")

library(ggplot2)

ggplot (mpg, aes(x=mpg))+
geom_histogram(data=subset (mpg,country=="Japan"), fill="red", alpha=0.5)+
geom_histogram(data=subset (mpg, country=="US"), fill="blue", alpha=0.5)

30-

count

10-

mpg
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Two-sample t-test

Assumptions

Let
@ Yy, represent the jth Japanese car
@ Y5, represent the jth American car
Assume

iid iid
Y1 = N(pg,0?) Yo = N(pz,0?)

Restate the hypotheses using this notation
Ho: p1 = p2

Hi: 1 # po

Alternatively

Ho: p1 —p2 =0

Hi: py — p2 #0
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Test statistic
Test statistic

The test statistic we use here is

71 —72 - (Ml - M2)
SE(Vl —72)

where

@ Y is the sample average mpg of the Japanese cars

@ Y, is the sample average mpg of the American cars
and

S — 1 1 (n —1)s? + (np — 1)s?
SE(Y1—Y5) = spy ) — + — -
( 1 2) Sp n + o Sp \/ (’71 T, — 2)

where

@ 51 is the sample standard deviation of the mpg of the Japanese cars

@ s, is the sample standard deviation of the mpg of the American cars
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Two-sample t-test Pvalue

Pvalue

If Hp is true, then p1 = pp and the test statistic

Vi Vo (o)

SE(Y1— Y2)

tn1+n2—2

where t,, is a t-distribution with v degrees of freedom.

Pvalue is P(|tn,+n—2| > |t]) = P(tny4n—2 > |t]) + P(tn,4+n—2 < —|t]) or

as a picture

Probability density function
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Pualue
Hand calculation

To calculate the quantity by hand, we need 6 numbers:

library(plyr)
ddply (mpg, .(country), summarize, n=length(mpg), mean=mean(mpg), sd=sd(mpg))

country n mean sd
1 Japan 79 30.48 6.108
2 US 249 20.14 6.415
Calculate

_ [(79-1)x6.112+(249—1) x6.412
Sp = 7912492
Y.—Y — /Ll 4 1
f — 305-20.1

0.82

Finally, we are interested in finding

=6.34

=0.82
=12.6

P(|t326] > |12.6]) = 2P(t326 < —|12.6]) < 0.0001 which is found using a

table or software.
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Confidence interval
Confidence interval

Alternatively, we can construct a 100(1-a)% confidence interval. The
formula is o -
Yi— Yo+t tn1+n2—2(1 — a/2)SE(Y1 — Y2)

where + indicates plus and minus and t,(1 — «/2) is the value such that
P(t, < t,(1—«/2))=1—a/2. If « =0.05 and v = 326, then
t,(1 —«/2) =1.97.
The 95% confidence interval is
30.5—-20.1£1.97 x0.82 = (8.73, 11.9)
We are 95% confident that, on average, Japanese cars get between 8.73

and 11.9 more mpg than American cars.
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UTGERE
SAS code for two-sample t-test

DATA mpg;
INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
INPUT mpg country $;

PROC TTEST DATA=mpg;
CLASS country;
VAR mpg;
RUN;
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country N
Japan 79
Us 249
Diff (1-2)
country Method
Japan
us
Diff (1-2) Pooled
Diff (1-2) Satterthwaite
Method
Pooled
Satterthwaite
Method
Folded F

Jarad Niemi (lowa State)

The TTEST Procedure

Variable: mpg

Mean Std Dev Std Err Minimum Maximum
30.4810 6.1077 0.6872 18.0000 47.0000
20.1446 6.4147 0.4065 9.0000 39.0000
10.3364 6.3426 0.8190
Mean 95% CL Mean Std Dev 95% CL Std Dev
30.4810 29.1130 31.8491 6.1077 5.2814  7.2429
20.1446 19.3439 20.9452 6.4147 5.8964 7.0336
10.3364 8.7252 11.9477 6.3426 5.8909 6.8699
10.3364 8.7576 11.9152
Variances df t Value Pr > |tl
Equal 326 12.62 <.0001
Unequal 136.87 12.95 <.0001
Equality of Variances
Num df Den df F Value Pr > F
248 78 1.10 0.6194
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R code/output for two-sample t-test

t.test (mpg~country, data=mpg, var.equal=TRUE)

Two Sample t-test

data: mpg by country

t = 12.62, df = 326, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

8.725 11.948
sample estimates:
mean in group Japan mean in group US
30.48 20.14
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Conclusion

Mean miles per gallon of Japanese cars is significantly different than mean
miles per gallon of American cars (two-sample t-test t=12.62,

p < 0.0001). Japanese cars get an average of 10.3 [95% Cl (8.7,11.9)]
more miles per gallon than American cars.
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Tests and Cls

Goal: provide a generic framework for hypothesis test and confidence
interval construction
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s
Hypotheses

Three key features:
@ a test statistic calculated from data
@ a sampling distribution for the test statistic under the null hypothesis

@ a region that is as or more extreme (one-sided vs two-sided
hypotheses)

Calculate probability of being in the region:
Definition

A pvalue is the probability of observing a test statistic as or more extreme
than that observed, if the null hypothesis is true.

o If pvalue is less than or equal to «, we reject the null hypothesis.
o If pvalue is greater than «, we fail to reject the null hypothesis.

Jarad Niemi (lowa State) Inference Using t-Distributions September 8, 2014 31/ 42



Tests and Cls Hypothesis testing

Hypothesis testing framework

Let's assume, we have

@ a parameter u and an estimate [,

@ calculated a test statistic t = (i — u)/SE(fi), and

@ if the null hypothesis is true, t has a t, sampling distribution.
Now, we can have one of three types of hypotheses:

© Two-sided (Ho : o= 1o vs Hy @ # fig):

pvalue = P(t, > [t|) + P(t, < —|t]|) = 2P(t, < —|t|)
@ One-sided (Hp : pu < g vs Hy @ o > pip):
pvalue = P(t, > t) = P(t, < —t)
@ One-sided (Hp : o > o vs Hy - < po):
pvalue = P(t, < t)

F(t) = P(t, < t) is the cumulative distribution function for a t distribution with

v degrees of freedom.
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Hypothesis testing
Regions for hypothesis tests

Probability density function

T T T
-t 0 t

If test statistic is t, two-sided (both red and blue areas), one-sided with
p > 0 (blue area), one-sided with ;1 < 0 (one minus blue area).
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Tests and Cls Hypothesis testing

Paired t-test example

In the paired t-test example, we had a test statistic

t = (D —0)/SE(D) = 2.43 with a t; sampling distribution if the null
hypothesis is true.

Consider the following hypotheses (u is the expected difference):
@ Two-sided (Hp : £ =0vs Hy : u # 0):

pvalue = 2P(t; < —2.43) = 0.0454
@ One-sided (Hop : <0 vs Hy : > 0):

pvalue = P(t; < —2.43) = 0.0227
@ One-sided (Ho: n>0vs Hy : pu < 0):

pvalue = P(t; < 2.43) = 0.9773
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Tests and Cls Hypothesis testing

Two-sample t-test example

In a two-sample t-test, we might have a test statistic t = —2 with a t3g
sampling distribution if the null hypothesis is true.

Consider the following hypotheses (11 — pz is the expected difference):
e Two-sided (Ho : 11 — 2 =0 vs Hy : g — pp # 0):

pvalue = 2P(t3p < —2) = 0.0546
@ One-sided (Hp : pi1 — p2 <0 vs Hy : g — pp > 0):
pvalue = P(t3p < 2) = 0.9727
@ One-sided (Hp : 11 — p2 > 0 vs Hy @ g — po < 0):

pvalue = P(t3g < —2) = 0.0273

Jarad Niemi (lowa State) Inference Using t-Distributions September 8, 2014

35 / 42



Tests and Cls Confidence intervals

Confidence interval construction

Key steps in confidence interval construction for u:
@ Calculate point estimate [
@ Calculate standard error of the statistic SE(f1)
@ Set error level « (usually 0.05)

@ Find the appropriate critical value
@ Construct the 100(1 — «)% confidence interval
e Two-sided (Ho : pt = po vs Hi @ # po): (L, U)

(L, U) = estimate = critical value(1 — «/2) x standard error
o One-sided (Hp : pt < po vs Hy @ > po): (L, 00)
L = estimate — critical value(1 — «) x standard error
o One-sided (Hp : pt > po vs Hy : pp < po): (—o0, U)

U = estimate + critical value(1 — &) x standard error
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Tests and Cls Confidence intervals

Critical values

A related quantity are critical values, e.g. t,(1 — «/2).

Probability density function

1-a/2

T T
0 t(1-a/2)

Let ¢ = t,(1 — «/2), then we need P(t, < ¢) =1 — «/2, i.e. the inverse
of the cumulative distribution function (quantile function).
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Tests and Cls Confidence intervals

Paired t-test example

In the paired t-test example, we had an estimate i = 10.5 and a standard

error of 4.3136 with 7 degrees of freedom.

The 95%, i.e. a = 0.05, confidence intervals for i are
e Two-sided (t7(.975) = 2.364624)

10.5 + 2.364624 x 4.3136 = (0.30,20.7)
@ One-sided (positive) (t7(.95) = 1.894579)
(10.5 — 1.894579 x 4.3136, 00) = (2.33, 00)
@ One-sided (negative) (t7(.95) = 1.894579)

(—00,10.5 + 1.894579 x 4.3136) = (—o0, 18.7)
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Tests and Cls Confidence intervals

Two-sample t-test example

—

In the two-sample t-test example, we had an estimate p1 — o = 10.33643

and a pooled standard error of 0.8190 with 326 degrees of freedom.

The 90%, i.e. a = 0.10, confidence intervals for 3 — uy are
o Two-sided (t326(.95) = 1.649541)

10.33643 + 1.649541 x 0.8190 = (9.0,11.7)
@ One-sided (positive) (t326(.90) = 1.285149)
(10.33643 — 1.285149 x 0.8190, 00 = (9.3, 50)
@ One-sided (negative) (t326(.90) = 1.285149)

(—00,10.33643 + 1.285149 x 0.8190) = (—o0, 11.4)
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e U
Find critical values using SAS or R

If v = 0.05, then 1 — ov/2 = 0.975.

In SAS,

PROC IML;
q = QUANTILE('T', 0.975, 7);

PRINT q;
QUIT;

In R,

q = qt(0.975,7)

Both obtain q=2.364.
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Tests and Cls Confidence intervals

Equivalence of confidence intervals and pvalues

Theorem

If the 100(1 — )% confidence interval does not contain g, then the associated
hypothesis test would reject the null hypothesis at level o, i.e. the pvalue will be
less than o

Examples:

@ In the paired t-test example, the one-sided 95% confidence interval for the
difference was (2.33, 00) which does not include 0. Thus the pvalue for the
one-sided hypothesis test (with alternative that the difference was greater
than zero) was less than 0.05 (it was 0.02) and the null hypothesis was
rejected.

@ In the two-sample t-test example, the two-sided 95% confidence interval for
the difference was (9.0,11.7) which does not include 0. Thus the pvalue for
the two-sided hypothesis test was less than 0.05 (it was < 0.0001) and the
null hypothesis was rejected.

Remark Rather than reporting the pvalue, report the confidence interval as it

provides the same information and more.
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ACSSELCNEEN Summary

Summary

Two main approaches to statistical inference:
e Statistical hypothesis (hypothesis test)

e Statistical question (confidence interval)
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