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Background Random variables

Random variables

From: http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html

Definition

A random variable is a function that associates a unique numerical value
with every outcome of an experiment.

Definition

A discrete random variable is one which may take on only a countable
number of distinct values such as 0, 1, 2, 3, 4,... Discrete random
variables are usually (but not necessarily) counts.

Definition

A continuous random variable is one which takes an infinite number of
possible values. Continuous random variables are usually measurements.
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Background Random variables

Random variables

Examples:

Discrete random variables

Coin toss: Heads (1) or Tails (0)
Die roll: 1, 2, 3, 4, 5, or 6
Number of Ovenbirds at a 10-minute point count
RNAseq feature count

Continuous random variables

Pig average daily (weight) gain
Corn yield per acre
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Background Random variables

Statistical notation

Let Y be 1 if the coin toss is heads and 0 if tails, then

Y ∼ Bin(n, p)

which means

Y is a binomial random variable with n trials and probability of
success p

For example, if Y is the number of heads observed when tossing a fair coin
ten times, then Y ∼ Bin(10, 0.5).

Later we will be constructing 100(1− α)% confidence intervals, these
intervals are constructed such that if n of them are constructed then
Y ∼ Bin(n, 1− α) will cover the true value.
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Background Random variables

Statistical notation

Let Yi be the average daily (weight) gain in pounds for the ith pig, then

Yi
iid∼ N(µ, σ2)

which means

Yi are independent and identically distributed normal (Gaussian)
random variables with expected value E [Yi ] = µ and variance
V [Yi ] = σ2 (standard deviation σ).

For example, if a litter of pigs is expected to gain 2 lbs/day with a
standard deviation of 0.5 lbs/day and the knowledge of how much one pig
gained does not affect what we think about how much the others have

gained, then Yi
iid∼ N(2, 0.52).
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Background Normal distribution

Normal (Gaussian) distribution

A random variable Y has a normal distribution, i.e. Y ∼ N(µ, σ2), with
mean µ and variance σ2 if draws from this distribution follow a bell curve
centered at µ with spread determined by σ2:

Probability density function

y

f(
y)

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

68%

95%

99.7%
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Background t-distribution

t-distribution

A random variable Y has a t-distribution, i.e. Y ∼ tv , with degrees of
freedom v if draws from this distribution follow a similar bell shaped
pattern:

Probability density function

y

f(
y)

−3 −2 −1 0 1 2 3

N(0, 1)
t3
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Background t-distribution

t-distribution

As v →∞, then tv
d→ N(0, 1), i.e. as the degrees of freedom increase, a t

distribution gets closer and closer to a standard normal distribution, i.e.
N(0, 1). If v > 30, the differences is negligible.

Probability density function

y

f(
y)

−3 −2 −1 0 1 2 3

N(0, 1)
t30
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Background t-distribution

t critical value

Definition

If T ∼ tv , a tv (1− α/2) critical value is the value such that
P(T < tv (1− α/2)) = 1− α/2 (or P(T > tv (1− α)) = α/2).

Probability density function t5

t

f(
t)

1.475884

0.9 0.1
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Paired data

Cedar-apple rust

Cedar-apple rust is a (non-fatal) disease that affects apple trees. Its most obvious

symptom is rust-colored spots on apple leaves. Red cedar trees are the immediate

source of the fungus that infects the apple trees. If you could remove all red cedar

trees within a few miles of the orchard, you should eliminate the problem. In the

first year of this experiment the number of affected leaves on 8 trees was counted;

the following winter all red cedar trees within 100 yards of the orchard were

removed and the following year the same trees were examined for affected leaves.

Statistical hypothesis:
H0: Removing red cedar trees increases or maintains the same mean

number of rusty leaves.
H1: Removing red cedar trees decreases the mean number of rusty leaves.

Statistical question:
What is the expected reduction of rusty leaves in our sample between
year 1 and year 2 (perhaps due to removal of red cedar trees)?
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Paired data

Data

Here are the data

library(plyr)

y1 = c(38,10,84,36,50,35,73,48)

y2 = c(32,16,57,28,55,12,61,29)

leaves = data.frame(year1=y1, year2=y2, diff=y1-y2)

leaves

year1 year2 diff

1 38 32 6

2 10 16 -6

3 84 57 27

4 36 28 8

5 50 55 -5

6 35 12 23

7 73 61 12

8 48 29 19

summarize(leaves, n=length(diff), mean=mean(diff), sd=sd(diff))

n mean sd

1 8 10.5 12.2

Is this a statistically significant difference?
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Paired data Paired t-test

Assumptions

Let

Y1j be the number of rusty leaves on tree j in year 1

Y2j be the number of rusty leaves on tree j in year 2

Assume
Dj = Y1j − Y2j

iid∼ N(µ, σ2)

Then the statistical hypothesis test is

H0: µ = 0 (µ ≤ 0)

H1: µ > 0

while the statistical question is ’what is µ?’
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Paired data Paired t-test

Paired t-test pvalue

Test statistic

t =
D − µ
SE (D)

where SE (D) = s/
√
n with

n being the number of observations (differences),

s being the sample standard deviation of the differences, and

D being the average difference.

If H0 is true, then µ = 0 and t ∼ tn−1. The pvalue is P(tn−1 > t) since
this is a one-sided test. By symmetry, P(tn−1 > t) = P(tn−1 < −t).

For these data,

D = 10.5, SE(D) = 4.31, t7 = 2.43, andp = 0.02
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Paired data Paired t-test

Confidence interval for µ

The 100(1-α)% confidence interval has lower endpoint

D − tn−1(1− α)SE (D)

and upper endpoint at infinity

For these data at 95% confidence, t7(0.9) = 1.89 and thus the lower
endpoint is

10.5− 1.89× 4.31 = 2.33

So we are 95% confident that the true difference in the number of rusty
leaves is greater than 2.33.
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Paired data SAS

SAS code for paired t-test

DATA leaves;

INPUT tree year1 year2;

DATALINES;

1 38 32

2 10 16

3 84 57

4 36 28

5 50 55

6 35 12

7 73 61

8 48 29

;

PROC TTEST DATA=leaves SIDES=U;

PAIRED year1*year2;

RUN;
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Paired data SAS

SAS output for paired t-test

The TTEST Procedure

Difference: year1 - year2

N Mean Std Dev Std Err Minimum Maximum

8 10.5000 12.2007 4.3136 -6.0000 27.0000

Mean 95% CL Mean Std Dev 95% CL Std Dev

10.5000 2.3275 Infty 12.2007 8.0668 24.8317

df t Value Pr > t

7 2.43 0.0226
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Paired data SAS

R output for paired t-test

t.test(leaves$year1, leaves$year2, paired=TRUE, alternative="greater")

Paired t-test

data: leaves$year1 and leaves$year2

t = 2.434, df = 7, p-value = 0.02257

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

2.328 Inf

sample estimates:

mean of the differences

10.5
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Paired data SAS

Statistical Conclusion

Removal of red cedar trees within 100 yards is associated with a significant
reduction in rusty apple leaves (paired t-test t7=2.43, p=0.023). The
mean reduction in rust color leaves is 10.5 [95% CI (2.33,∞)].
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Two-sample t-test

Do Japanese cars get better mileage than American cars?

Statistical hypothesis:

H0: Mean mpg of Japanese cars is the same as mean mpg of American cars.
H1: Mean mpg of Japanese cars is different than mean mpg of American

cars.

Statistical question:

What is the difference in mean mpg between Japanese and American
cars?

Data collection:

Collect a random sample of Japanese/American cars
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Two-sample t-test

mpg = read.csv("mpg.csv")

library(ggplot2)

ggplot(mpg, aes(x=mpg))+

geom_histogram(data=subset(mpg,country=="Japan"), fill="red", alpha=0.5)+

geom_histogram(data=subset(mpg,country=="US"), fill="blue", alpha=0.5)
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Two-sample t-test

Assumptions

Let

Y1j represent the jth Japanese car

Y2j represent the jth American car

Assume
Y1j

iid∼ N(µ1, σ
2) Y2j

iid∼ N(µ2, σ
2)

Restate the hypotheses using this notation

H0: µ1 = µ2

H1: µ1 6= µ2

Alternatively

H0: µ1 − µ2 = 0

H1: µ1 − µ2 6= 0
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Two-sample t-test Test statistic

Test statistic

The test statistic we use here is

Y 1 − Y 2 − (µ1 − µ2)

SE (Y 1 − Y 2)

where

Y 1 is the sample average mpg of the Japanese cars

Y 2 is the sample average mpg of the American cars

and

SE (Y 1 − Y 2) = sp

√
1

n1
+

1

n2
sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

(n1 + n2 − 2)

where

s1 is the sample standard deviation of the mpg of the Japanese cars

s2 is the sample standard deviation of the mpg of the American cars
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Two-sample t-test Pvalue

Pvalue

If H0 is true, then µ1 = µ2 and the test statistic

t =
Y 1 − Y 2 − (µ1 − µ2)

SE (Y 1 − Y 2)
∼ tn1+n2−2

where tν is a t-distribution with ν degrees of freedom.

Pvalue is P(|tn1+n2−2| > |t|) = P(tn1+n2−2 > |t|) + P(tn1+n2−2 < − |t|) or
as a picture
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Two-sample t-test Pvalue

Hand calculation

To calculate the quantity by hand, we need 6 numbers:

library(plyr)

ddply(mpg, .(country), summarize, n=length(mpg), mean=mean(mpg), sd=sd(mpg))

country n mean sd

1 Japan 79 30.48 6.108

2 US 249 20.14 6.415

Calculate

sp =
√

(79−1)×6.112+(249−1)×6.412

79+249−2 = 6.34

SE (Y 1 − Y 2) = 6.34
√

1
79 + 1

249 = 0.82

t = 30.5−20.1
0.82 = 12.6

Finally, we are interested in finding
P(|t326| > |12.6|) = 2P(t326 < −|12.6|) < 0.0001 which is found using a
table or software.
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Two-sample t-test Confidence interval

Confidence interval

Alternatively, we can construct a 100(1-α)% confidence interval. The
formula is

Y 1 − Y 2 ± tn1+n2−2(1− α/2)SE (Y 1 − Y 2)

where ± indicates plus and minus and tν(1− α/2) is the value such that
P(tν < tν(1− α/2)) = 1− α/2. If α = 0.05 and ν = 326, then
tν(1− α/2) = 1.97.

The 95% confidence interval is

30.5− 20.1± 1.97× 0.82 = (8.73, 11.9)

We are 95% confident that, on average, Japanese cars get between 8.73
and 11.9 more mpg than American cars.
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Two-sample t-test Using SAS

SAS code for two-sample t-test

DATA mpg;

INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;

INPUT mpg country $;

PROC TTEST DATA=mpg;

CLASS country;

VAR mpg;

RUN;
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Two-sample t-test Using SAS

The TTEST Procedure

Variable: mpg

country N Mean Std Dev Std Err Minimum Maximum

Japan 79 30.4810 6.1077 0.6872 18.0000 47.0000

US 249 20.1446 6.4147 0.4065 9.0000 39.0000

Diff (1-2) 10.3364 6.3426 0.8190

country Method Mean 95% CL Mean Std Dev 95% CL Std Dev

Japan 30.4810 29.1130 31.8491 6.1077 5.2814 7.2429

US 20.1446 19.3439 20.9452 6.4147 5.8964 7.0336

Diff (1-2) Pooled 10.3364 8.7252 11.9477 6.3426 5.8909 6.8699

Diff (1-2) Satterthwaite 10.3364 8.7576 11.9152

Method Variances df t Value Pr > |t|

Pooled Equal 326 12.62 <.0001

Satterthwaite Unequal 136.87 12.95 <.0001

Equality of Variances

Method Num df Den df F Value Pr > F

Folded F 248 78 1.10 0.6194
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Two-sample t-test Using SAS

R code/output for two-sample t-test

t.test(mpg~country, data=mpg, var.equal=TRUE)

Two Sample t-test

data: mpg by country

t = 12.62, df = 326, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

8.725 11.948

sample estimates:

mean in group Japan mean in group US

30.48 20.14
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Two-sample t-test Using SAS

Conclusion

Mean miles per gallon of Japanese cars is significantly different than mean
miles per gallon of American cars (two-sample t-test t=12.62,
p < 0.0001). Japanese cars get an average of 10.3 [95% CI (8.7,11.9)]
more miles per gallon than American cars.
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Tests and CIs

Tests and CIs

Goal: provide a generic framework for hypothesis test and confidence
interval construction
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Tests and CIs Hypothesis testing

Hypotheses

Three key features:

a test statistic calculated from data

a sampling distribution for the test statistic under the null hypothesis

a region that is as or more extreme (one-sided vs two-sided
hypotheses)

Calculate probability of being in the region:

Definition

A pvalue is the probability of observing a test statistic as or more extreme
than that observed, if the null hypothesis is true.

If pvalue is less than or equal to α, we reject the null hypothesis.

If pvalue is greater than α, we fail to reject the null hypothesis.
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Tests and CIs Hypothesis testing

Hypothesis testing framework

Let’s assume, we have

a parameter µ and an estimate µ̂,

calculated a test statistic t = (µ̂− µ)/SE (µ̂), and

if the null hypothesis is true, t has a tν sampling distribution.

Now, we can have one of three types of hypotheses:

Two-sided (H0 : µ = µ0 vs H1 : µ 6= µ0):

pvalue = P(tν > |t|) + P(tν < −|t|) = 2P(tν < −|t|)

One-sided (H0 : µ ≤ µ0 vs H1 : µ > µ0):

pvalue = P(tν > t) = P(tν < −t)

One-sided (H0 : µ ≥ µ0 vs H1 : µ < µ0):

pvalue = P(tν < t)

F (t) = P(tν < t) is the cumulative distribution function for a t distribution with

ν degrees of freedom.
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Tests and CIs Hypothesis testing

Regions for hypothesis tests
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If test statistic is t, two-sided (both red and blue areas), one-sided with
µ > 0 (blue area), one-sided with µ < 0 (one minus blue area).
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Tests and CIs Hypothesis testing

Paired t-test example

In the paired t-test example, we had a test statistic
t = (D − 0)/SE (D) = 2.43 with a t7 sampling distribution if the null
hypothesis is true.

Consider the following hypotheses (µ is the expected difference):

Two-sided (H0 : µ = 0 vs H1 : µ 6= 0):

pvalue = 2P(t7 < −2.43) = 0.0454

One-sided (H0 : µ ≤ 0 vs H1 : µ > 0):

pvalue = P(t7 < −2.43) = 0.0227

One-sided (H0 : µ ≥ 0 vs H1 : µ < 0):

pvalue = P(t7 < 2.43) = 0.9773
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Tests and CIs Hypothesis testing

Two-sample t-test example

In a two-sample t-test, we might have a test statistic t = −2 with a t30

sampling distribution if the null hypothesis is true.

Consider the following hypotheses (µ1 − µ2 is the expected difference):

Two-sided (H0 : µ1 − µ2 = 0 vs H1 : µ1 − µ2 6= 0):

pvalue = 2P(t30 < −2) = 0.0546

One-sided (H0 : µ1 − µ2 ≤ 0 vs H1 : µ1 − µ2 > 0):

pvalue = P(t30 < 2) = 0.9727

One-sided (H0 : µ1 − µ2 ≥ 0 vs H1 : µ1 − µ2 < 0):

pvalue = P(t30 < −2) = 0.0273
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Tests and CIs Confidence intervals

Confidence interval construction

Key steps in confidence interval construction for µ:
1 Calculate point estimate µ̂
2 Calculate standard error of the statistic SE (µ̂)
3 Set error level α (usually 0.05)
4 Find the appropriate critical value
5 Construct the 100(1− α)% confidence interval

Two-sided (H0 : µ = µ0 vs H1 : µ 6= µ0): (L,U)

(L,U) = estimate± critical value(1− α/2)× standard error

One-sided (H0 : µ ≤ µ0 vs H1 : µ > µ0): (L,∞)

L = estimate− critical value(1− α)× standard error

One-sided (H0 : µ ≥ µ0 vs H1 : µ < µ0): (−∞,U)

U = estimate + critical value(1− α)× standard error
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Tests and CIs Confidence intervals

Critical values

A related quantity are critical values, e.g. tν(1− α/2).
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0 tν(1 − α 2)

α 21 − α 2

Let c = tν(1− α/2), then we need P(tν < c) = 1− α/2, i.e. the inverse
of the cumulative distribution function (quantile function).
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Tests and CIs Confidence intervals

Paired t-test example

In the paired t-test example, we had an estimate µ̂ = 10.5 and a standard
error of 4.3136 with 7 degrees of freedom.

The 95%, i.e. α = 0.05, confidence intervals for µ are

Two-sided (t7(.975) = 2.364624)

10.5± 2.364624× 4.3136 = (0.30, 20.7)

One-sided (positive) (t7(.95) = 1.894579)

(10.5− 1.894579× 4.3136,∞) = (2.33,∞)

One-sided (negative) (t7(.95) = 1.894579)

(−∞, 10.5 + 1.894579× 4.3136) = (−∞, 18.7)
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Tests and CIs Confidence intervals

Two-sample t-test example

In the two-sample t-test example, we had an estimate µ̂1 − µ2 = 10.33643
and a pooled standard error of 0.8190 with 326 degrees of freedom.

The 90%, i.e. α = 0.10, confidence intervals for µ1 − µ2 are

Two-sided (t326(.95) = 1.649541)

10.33643± 1.649541× 0.8190 = (9.0, 11.7)

One-sided (positive) (t326(.90) = 1.285149)

(10.33643− 1.285149× 0.8190,∞) = (9.3,∞)

One-sided (negative) (t326(.90) = 1.285149)

(−∞, 10.33643 + 1.285149× 0.8190) = (−∞, 11.4)
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Tests and CIs Confidence intervals

Find critical values using SAS or R

If α = 0.05, then 1− α/2 = 0.975.

In SAS,

PROC IML;

q = QUANTILE('T', 0.975, 7);

PRINT q;

QUIT;

In R,

q = qt(0.975,7)

Both obtain q=2.364.

Jarad Niemi (Iowa State) Inference Using t-Distributions September 8, 2014 40 / 42



Tests and CIs Confidence intervals

Equivalence of confidence intervals and pvalues

Theorem

If the 100(1− α)% confidence interval does not contain µ0, then the associated
hypothesis test would reject the null hypothesis at level α, i.e. the pvalue will be
less than α.

Examples:

In the paired t-test example, the one-sided 95% confidence interval for the
difference was (2.33,∞) which does not include 0. Thus the pvalue for the
one-sided hypothesis test (with alternative that the difference was greater
than zero) was less than 0.05 (it was 0.02) and the null hypothesis was
rejected.

In the two-sample t-test example, the two-sided 95% confidence interval for
the difference was (9.0, 11.7) which does not include 0. Thus the pvalue for
the two-sided hypothesis test was less than 0.05 (it was < 0.0001) and the
null hypothesis was rejected.

Remark Rather than reporting the pvalue, report the confidence interval as it
provides the same information and more.
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Tests and CIs Summary

Summary

Two main approaches to statistical inference:

Statistical hypothesis (hypothesis test)

Statistical question (confidence interval)
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