STAT 401A - Statistical Methods for Research Workers
 Simple linear regression

Jarad Niemi (Dr. J)
Iowa State University
last updated: October 20, 2014

Simple Linear Regression

Recall the one-way ANOVA model:

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)
$$

where $Y_{i j}$ is the observation for individual i in group j.
The simple linear regression model is

$$
Y_{i} \stackrel{\text { ind }}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

where Y_{i} and X_{i} are the response and explanatory variable, respectively, for individual i.

response	explanatory
outcome	covariate
dependent	independent
endogenous	exogenous

Telomere length

http://www.pnas.org/content/101/49/17312
People who are stressed over long periods tend to look haggard, and it is commonly thought that psychological stress leads to premature aging and the earlier onset of diseases of aging.

This design allowed us to examine the importance of perceived stress and measures of objective stress (caregiving status and chronicity of caregiving stress based on the number of years since a child's diagnosis).

Telomere length values were measured from DNA by a quantitative $P C R$ assay that determines the relative ratio of telomere repeat copy number to single-copy gene copy number (T / S ratio) in experimental samples as compared with a reference DNA sample.

Parameter interpretation

$$
E\left[Y_{i} \mid X_{i}=x\right]=\beta_{0}+\beta_{1} x \quad V\left[Y_{i} \mid X_{i}=x\right]=\sigma^{2}
$$

- If $X_{i}=0$, then $E\left[Y_{i} \mid X_{i}=0\right]=\beta_{0}$.
β_{0} is the expected response when the explanatory variable is zero.
- If X_{i} increases from x to $x+1$, then

$$
\begin{aligned}
E\left[Y_{i} \mid X_{i}=x+1\right] & =\beta_{0}+\beta_{1} x+\beta_{1} \\
-E\left[Y_{i} \mid X_{i}=x\right] & =\beta_{0}+\beta_{1} x \\
\hline & =\beta_{1}
\end{aligned}
$$

β_{1} is the expected increase in the response for each unit increase in the explanatory variable.

- σ is the standard deviation of the response for a fixed value of the explanatory variable.

Remove the mean:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+e_{i} \quad e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

So the error is

$$
e_{i}=Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)
$$

which we approximate by the residual

$$
r_{i}=\hat{e}_{i}=Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}\right)
$$

The least squares, maximum likelihood, and Bayesian estimators are

$$
\begin{aligned}
\hat{\beta}_{1} & =S X Y / S X X \\
\hat{\beta}_{0} & =\bar{Y}-\hat{\beta}_{1} \bar{X} \\
\hat{\sigma}^{2} & =S S E /(n-2) \quad \text { df }=n-2 \\
\bar{X} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
\bar{Y} & =\frac{1}{n} \sum_{i=1}^{n} Y_{i} \\
S X Y & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
S X X & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
S S E & =\sum_{i=1}^{n} r_{i}^{2}
\end{aligned}
$$

How certain are we about $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ being equal to β_{0} and β_{1} ?

We quantify this uncertainty using their standard errors:

$$
\left.\begin{array}{rlrl}
S E\left(\beta_{0}\right) & =\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{(n-1) s_{X}^{2}}} & & d f=n-2 \\
S E\left(\beta_{1}\right) & =\hat{\sigma} \sqrt{\frac{1}{(n-1) s_{X}^{2}}} & & d f=n-2 \\
& & & \\
s_{X}^{2} & =S X X /(n-1) & & \\
s_{Y}^{2} & =S Y Y /(n-1) & & \\
S Y Y & =\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & & \\
r_{X Y} & =\frac{S X Y /(n-1)}{s_{X S Y}} & & \\
R^{2} & =r_{X Y}^{2} & & \\
S S T & =S Y Y=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & & \\
\text { correlation coefficient }
\end{array}\right) \quad \begin{aligned}
& \text { coefficient of determination }
\end{aligned}
$$

The coefficient of determination $\left(R^{2}\right)$ is the proportion of the total response variation explained by the explanatory variable(s).

Telomere length vs years post diagnosis

Pvalues and confidence interval

We can compute two-sided pvalues via

$$
2 P\left(t_{n-2}<-\left|\frac{\hat{\beta}_{0}}{S E\left(\beta_{0}\right)}\right|\right) \quad \text { and } \quad 2 P\left(t_{n-2}<-\left|\frac{\hat{\beta}_{1}}{S E\left(\beta_{1}\right)}\right|\right)
$$

These test the null hypothesis that the corresponding parameter is zero.

We can construct $100(1-\alpha) \%$ two-sided confidence intervals via

$$
\hat{\beta}_{0} \pm t_{n-2}(1-\alpha / 2) S E\left(\beta_{0}\right) \quad \text { and } \quad \hat{\beta}_{1} \pm t_{n-2}(1-\alpha / 2) \operatorname{SE}\left(\beta_{1}\right)
$$

These provide ranges of the parameters consistent with the data.

Calculations by hand

```
    n Xbar Ybar s_X s_Y r_XY
1 39 5.59 1.22 2.935 0.1798 -0.4307
```

$$
\begin{aligned}
S X X & =(n-1) s_{X}^{2}=(39-1) \times 2.935427^{2}=327.4358 \\
S Y Y & =(n-1) s_{Y}^{2}=(39-1) \times 0.1797731^{2}=1.228098 \\
S X Y & =(n-1) s_{X} s_{Y} r_{X Y}=(39-1) \times 2.935427 \times 0.1797731 \times-0.4306534=-8.635897 \\
\hat{\beta}_{1} & =S X Y / S X X=-8.635897 / 327.4358=-0.02637432 \\
\hat{\beta}_{0} & =\bar{Y}-\hat{\beta}_{1} \bar{X}=1.220256-(-0.02637432) \times 5.589744=1.367682 \\
R^{2} & =r_{X Y}^{2}=(-0.4306534)^{2}=0.1854624 \\
S S E & =S Y Y\left(1-R^{2}\right)=1.228098(1-0.1854624)=1.000332 \\
\hat{\sigma}^{2} & =S S E /(n-2)=1.000332 /(39-2)=0.027036 \\
\hat{\sigma} & =\sqrt{\hat{\sigma}^{2}}=\sqrt{0.027036}=0.1644263 \\
S E\left(\hat{\beta}_{0}\right) & =\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{(n-1) s_{X}^{2}}}=0.1644263 \sqrt{\frac{1}{39}+\frac{5.589744^{2}}{327.4358}}=0.05721115 \\
S E\left(\hat{\beta}_{1}\right) & =\hat{\sigma} \sqrt{\frac{1}{(n-1) s_{X}^{2}}}=0.1644263 \sqrt{\frac{1}{327}}=0.4358 \\
& =0.009086742 \\
P_{H_{0}: \beta_{0}=0} & =2 P\left(t_{n-2}<-\left|\frac{1.367682}{0.05721115}\right|\right)=2 P\left(t_{37}<-23.90586\right)<0.0001 \\
P_{H_{0}}: \beta_{1}=0 & =2 P\left(t_{n-2}<-\left|\frac{-0.0263732}{0.009086742}\right|\right)=2 P\left(t_{37}<-2.902506\right)<0.0062 \\
C l_{55} \% \beta_{0} & =\hat{\beta}_{0} \pm t_{n-2}(1-\alpha / 2) S E\left(\hat{\beta}_{0}\right)=1.367682 \pm 2.026192 \times 0.05721115=(1.251761,1.483603) \\
C l_{95 \%} \% \beta_{1} & =\hat{\beta}_{1} \pm t_{n-2}(1-\alpha / 2) S E\left(\hat{\beta}_{1}\right)=-0.02637432 \pm 2.026192 \times 0.009086742=(-0.044785804-0.007962836)
\end{aligned}
$$

```
DATA t;
    INFILE 'telomeres.csv' DSD FIRSTOBS=2;
    INPUT years length;
PROC CORR DATA=t;
    VAR length;
    WITH years;
    RUN;
```

```
The CORR Procedure
1 With Variables: years
1 Variables: length
```

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
years	39	5.58974	2.93543	218.00000	1.00000	12.00000
length	39	1.22026	0.17977	47.59000	0.84000	1.63000

Pearson Correlation Coefficients, $\mathrm{N}=39$
Prob > |r| under HO: Rho=0
length
years $\quad-0.43065$
0.0062

Regression in R

```
m = lm(telomere.length~years, Telomeres)
with(Telomeres, cor(telomere.length,years))
[1] -0.4307
anova (m)
Analysis of Variance Table
Response: telomere.length
    Df Sum Sq Mean Sq F value Pr(>F)
years }\begin{array}{llllll}{1}&{0.228}&{0.228}&{8.42}&{0.0062}
Residuals 37 1.000 0.027
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Regression in R

```
m = lm(telomere.length~}\mathrm{ years, Telomeres)
summary(m)
Call:
lm(formula = telomere.length ~ years, data = Telomeres)
Residuals:
    Min 1Q Median 3Q Max
-0.4222 -0.0854 0.0206 0.1074 0.2887
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate Std. Error & t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 1.36768 & 0.05721 & 23.9 & \(<2 \mathrm{e}-16 * * *\) \\
years & -0.02637 & 0.00909 & -2.9 & \(0.0062^{* *}\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.164 on 37 degrees of freedom
Multiple R-squared: 0.185, Adjusted R-squared: 0.163
F-statistic: 8.42 on 1 and 37 DF, p-value: 0.0062
confint(m)
    2.5% 97.5 %
(Intercept) 1.25176 1.483603
years -0.04479 -0.007963
```


Conclusion

Telomere length at the time of diagnosis of a child's chronic illness is estimated to be 1.37 with a 95% confidence interval of ($1.25,1.48$). For each year since diagnosis, the telomere length decreases by 0.026 with a 95% confidence interval of $(0.008,0.045)$ on average. The proportional of variability in telomere length described by years since diagnosis is 18.5%.
http://www.pnas.org/content/101/49/17312
The zero-order correlation between chronicity of caregiving [years] and mean telomere length, r, is $-0.445(P<0.01)$. [$R^{2}=0.198$ was shown in the plot.]

Remark I'm guessing our analysis and that reported in the paper don't match exactly due to a discrepancy in the data.

Summary

- The simple linear regression model is

$$
Y_{i} \stackrel{\text { ind }}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

where Y_{i} and X_{i} are the response and explanatory variable, respectively, for individual i.

- Know how to use $\mathrm{SAS} / \mathrm{R}$ to obtain $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\sigma}^{2}, R^{2}$, pvalues, Cls , etc.
- Interpret SAS output
- At a value of zero for the explanatory variable $\left(X_{i}=0\right), \beta_{0}$ is the expected value for the response (Y_{i}).
- For each unit increase in the explanatory variable value, β_{1} is the expected increase in the response.
- At a constant value of the explanatory variable, σ^{2} is the variance of the responses.
- The coefficient of determination $\left(R^{2}\right)$ is the percentage of the total response variation explained by the explanatory variable(s).

What is $E[Y \mid X=x]$?
We know $\beta_{0}=E[Y \mid X=0]$, but what about $X=x$?

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

which we can estimate via

$$
E[\widehat{Y \mid X}=x]=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

but there is uncertainty in both β_{0} and β_{1}. So the standard error of $E[Y \mid X=x]$ is

$$
S E(E[Y \mid X=x])=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{(\bar{X}-x)^{2}}{(n-1) s_{X}^{2}}}
$$

and a $100(1-\alpha) \%$ confidence interval is

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x \pm t_{n-2}(1-\alpha / 2) S E(E[Y \mid X=x])
$$

What do we predict about Y at $X=x$?

On the last slide, we calculated $E[Y \mid X=x]$ and it's uncertainty, but if we are trying to predict a new observation, we need to account for the sampling variablity σ^{2}. Thus a prediction about Y at a new $X=x$ is still

$$
\operatorname{Pred}\{Y \mid X=x\}=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

but the uncertainty includes the variability due to σ^{2}. So the standard error of $\operatorname{Pred}\{Y \mid X=x\}$ is

$$
\operatorname{SE}(\operatorname{Pred}\{Y \mid X=x\})=\hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{(\bar{X}-x)^{2}}{(n-1) s_{X}^{2}}}
$$

and a $100(1-\alpha) \%$ confidence interval is

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x \pm t_{n-2}(1-\alpha / 2) \operatorname{SE}(\operatorname{Pred}\{Y \mid X=x\})
$$

```
DATA tnew;
    INPUT years;
    DATALINES;
    4
    ;
DATA combined;
    SET t tnew;
    RUN;
PROC PRINT DATA=combined;
    WHERE years=4;
    RUN;
```

Obs	years	length
10	4	1.51
11	4	1.31
15	4	1.03
16	4	0.84
40	4	.

PROC GLM DATA=combined;
MODEL length = years;
OUTPUT OUT=combinedreg PREDICTED=predicted LCLM=1clm UCLM=uclm LCL=lcl UCL=ucl;
RUN;
PROC PRINT DATA=combinedreg;
WHERE length=.; /* . is missing data in SAS */
RUN;

Obs	years	length	predicted	lclm	uclm	lcl	ucl
40	4	.	1.26218	1.20133	1.32303	0.92351	1.60086

```
m = lm(telomere.length~years, Telomeres)
new = data.frame(years=4)
predict(m, new, interval="confidence")
    fit lwr upr
11.262 1.201 1.323
predict(m, new, interval="prediction")
    fit lwr upr
11.262 0.9235 1.601
```


Shifting the intercept

The intercept $\left(\beta_{0}\right)$ is the expected response when the explanatory variable is zero.

So, if we change our explanatory variable, we change the interpretation of our intercept, e.g. if, instead of using number of years since diagnosis, we use "number of years since diagnosis minus 4", then our intercept is the expected response at 4 years since diagnosis.

Let x be number of years since diagnosis, then

$$
E[Y \mid X=x]=\tilde{\beta}_{0}+\tilde{\beta}_{1}(x-4)=\left(\beta_{0}-4 \beta_{1}\right)+\beta_{1} x
$$

so our new parameters for the mean are

- intercept $\tilde{\beta}_{0}=\left(\beta_{0}-4 \beta_{1}\right)$ and
- slope $\tilde{\beta}_{1}=\beta_{1}$ (unchanged).

```
DATA t;
    INFILE "telomeres.csv" DSD FIRSTOBS=2;
    INPUT years length;
    years4 = years-4;
PROC GLM DATA=combined;
    MODEL length = years;
    RUN;
PROC GLM DATA=combined;
    MODEL length = years4;
    RUN;
\begin{tabular}{lrrrrrr} 
& & Standard \\
Parameter & Estimate & & Error & t Value & \(\operatorname{Pr}>|\mathrm{t}|\) & \(95 \%\) Confidence Limits \\
& & & & & & \\
Intercept & 1.367682067 & 0.05721112 & 23.91 & \(<.0001\) & 1.251761335 & 1.483602799 \\
years & -0.026374315 & 0.00908674 & -2.90 & 0.0062 & -0.044785794 & -0.007962836 \\
& & & & & & \\
Intercept & 1.262184808 & 0.03003174 & 42.03 & \(<.0001\) & 1.201334726 & 1.323034890 \\
years4 & -0.026374315 & 0.00908674 & -2.90 & 0.0062 & -0.044785794 & -0.007962836
\end{tabular}
```

```
m0 = lm(telomere.length ~ years , Telomeres)
m4 = lm(telomere.length ~ I(years-4), Telomeres)
coef (m0)
(Intercept) years
    1.36768 -0.02637
coef(m4)
    (Intercept) I(years - 4)
        1.26218 -0.02637
confint(m0)
    2.5% 97.5 %
(Intercept) 1.25176 1.483603
years -0.04479 -0.007963
confint(m4)
    2.5% 97.5%
(Intercept) 1.20133 1.323035
I (years - 4) -0.04479 -0.007963
```

