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All models are wrong!

George Box (Empirical Model-Building and Response Surfaces, 1987):

All models are wrong, but some are useful.

http:

//stats.stackexchange.com/questions/57407/what-is-the-meaning-of-all-models-are-wrong-but-some-are-useful

“All models are wrong” that is, every model is wrong because it is a
simplification of reality. Some models, especially in the ”hard”
sciences, are only a little wrong. They ignore things like friction or the
gravitational effect of tiny bodies. Other models are a lot wrong - they
ignore bigger things.

“But some are useful” - simplifications of reality can be quite
useful. They can help us explain, predict and understand the universe
and all its various components.

This isn’t just true in statistics! Maps are a type of model; they are
wrong. But good maps are very useful.
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Regression diagnostics

Regression

The simpler linear regression model is

Yi
ind∼ N(β0 + β1Xi , σ

2)

this can be rewritten as

Yi = β0 + β1Xi + ei ei
ind∼ N(0, σ2)

where we estimate the errors via the residuals

ri = êi = Yi − (β̂0 + β̂1Xi ).

Key assumptions are:

Normality of the errors

Constant variance of the errors

Independence of the errors

Linearity between mean response and explanatory variable
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Regression diagnostics Normality

Histograms with best fitting bell curves

Normal data
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Regression diagnostics Normality

Normal QQ-plot

Definition

The quantile-quantile or qq-plot is an exploratory graphical device used to
check the validity of a distributional assumption for a data set.

A normal qq-plot graphs the theoretical quantiles from a normal
distribution versus the observed quantiles. With a line that indicates
perfect normality.

Remark The bottom line is that, if the distribution assumption is
satisfied, the points should fall roughly along the line. Systematic variation
from this line indicates skewness,
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Regression diagnostics Normality

Normal
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Regression diagnostics Normality

Normal (n=10)
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Regression diagnostics Normality

Normal(n=100)
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Regression diagnostics Normality

Normal (n=1000)
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Regression diagnostics Normality

Not normal (n=10)

normal

Theoretical Quantiles

right−skewed left−skewed

light−tailed heavy−tailed
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Regression diagnostics Normality

Not normal (n=100)

normal

Theoretical Quantiles

right−skewed left−skewed

light−tailed heavy−tailed
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Regression diagnostics Normality

Not normal (n=1000)

normal

Theoretical Quantiles

right−skewed left−skewed

light−tailed heavy−tailed
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Regression diagnostics Normality

Summary

For normal qq-plots with (standardized) residuals (y-axis) vs theoretical
quantiles (x-axis), the following interpretations apply

If the residuals fall roughly along the line, then normality is
reasonable.

If the residuals have a U pattern, then there is right-skewness.

If the residuals have an upside down U pattern, then there is
left-skewness.

If the residuals have an S pattern, then there are light tails (we are
not too concerned about this situation because our inferences will be
conservative).

If the residuals have a rotated Z pattern, then there are heavy tails.

Other patterns are certainly possible, but these are the most common.
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Regression diagnostics Constant variance

Constant variance

Recall the model

Yi = β0 + β1Xi + ei ei
iid∼ N(0, σ2)

so the variance for the ei is constant.

To assess this assumption, we look at plots of residuals vs anything and
look for patterns that show different “spreads”, e.g.

funnels

football shapes

The most common way this assumption is violated is by having increasing
variance with increasing mean, thus we often look at a residuals vs
predicted (fitted) mean plot.
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Regression diagnostics Constant variance

Constant variance

Predicted mean

R
es

id
ua

l

Predicted mean

R
es

id
ua

l

Predicted mean
R

es
id

ua
l

Jarad Niemi (Iowa State) Regression diagnostics October 24, 2014 15 / 46



Regression diagnostics Constant variance

Constant variance
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Regression diagnostics Constant variance

Extreme non-constant variance (funnel)
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Regression diagnostics Constant variance

Extreme non-constant variance (funnel)
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Regression diagnostics Constant variance

Non-constant variance (n=10, σ2/σ1 = 4)
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Regression diagnostics Constant variance

Non-constant variance (n=100, σ2/σ1 = 4)

Jarad Niemi (Iowa State) Regression diagnostics October 24, 2014 20 / 46



Regression diagnostics Constant variance

Non-constant variance (n=1000, σ2/σ1 = 4)
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Regression diagnostics Constant variance

Extreme non-constant variance (football)
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Regression diagnostics Independence

Independence

Lack of independence includes

Cluster effect

Serial correlation

Spatial association

Make plots of residuals vs relevant explanatory variable(s) and look for
patterns, e.g.

Residuals vs groups

Residuals vs time (or observation number)

Residuals vs spatial variable
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Regression diagnostics Independence

No evidence for lack of independence
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Regression diagnostics Independence

Evidence for lack of independence
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Regression diagnostics Linearity

Linearity

Assess using scatterplots of (transformed) response vs (transformed)
explanatory variable:
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Regression diagnostics Lack-of-fit F-test

Testing Composite hypotheses

Comparing two models

H0 : (reduced)

H1 : (full)

Do the following

1. Calculate extra sum of squares.

2. Calculate extra degrees of freedom

3. Calculate

F-statistic =
Extra sum of squares / Extra degrees of freedom

σ̂2
full

4. Compare this to an F-distribution with

numerator degrees of freedom = extra degrees of freedom
denominator degrees of freedom = degrees of freedom in estimating σ̂2

full
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Regression diagnostics Lack-of-fit F-test

Lack-of-fit F-test

Let Yij be the i th observation from the j th group where the group is defined
by those observations having the same explanatory variable value (Xj).

Two models:

ANOVA: Yij
ind∼ N(µj , σ

2) (full)

Regression: Yij
ind∼ N(β0 + β1Xj , σ

2) (reduced)

Regression model is reduced:

ANOVA has J parameters for the mean
Regression has 2 parameters for the mean
Set µj = β0 + β1Xj .

Small pvalues indicate a lack-of-fit, i.e. the reduced model is not
adequate.

Lack-of-fit F-test requires multiple observations at a few Xj values!
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Regression diagnostics Lack-of-fit F-test

Telomere length
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Regression diagnostics Lack-of-fit F-test

Telomere length
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Regression diagnostics Lack-of-fit F-test

SAS code

DATA t;

INFILE 'telomeres.csv' DSD FIRSTOBS=2;

INPUT years length;

PROC REG DATA=t;

MODEL length = years / CLB LACKFIT;

RUN;

The REG Procedure

Model: MODEL1

Dependent Variable: length

Number of Observations Read 39

Number of Observations Used 39

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 0.22777 0.22777 8.42 0.0062

Error 37 1.00033 0.02704

Lack of Fit 9 0.18223 0.02025 0.69 0.7093

Pure Error 28 0.81810 0.02922

Corrected Total 38 1.22810

Indicates no evidence for a lack of fit, i.e. regression seems adequate.
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Regression diagnostics Lack-of-fit F-test

# Use as.factor to turn a continuous variable into a categorical variable

m_anova = lm(telomere.length ~ as.factor(years), Telomeres)

m_reg = lm(telomere.length ~ years , Telomeres)

anova(m_reg, m_anova)

Analysis of Variance Table

Model 1: telomere.length ~ years

Model 2: telomere.length ~ as.factor(years)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 37 1.000

2 28 0.818 9 0.182 0.69 0.71

No evidence of a lack of fit.
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Regression diagnostics Lack-of-fit F-test

Lack-of-fit F-test summary

Lack-of-fit F-test tests the assumption of linearity

Needs multiple observations at various explanatory variable values

Small pvalue indicates a lack-of-fit, i.e. means are not linear

Transform response, e.g. log
Transform explanatory variable
Add other explanatory variable(s)
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Regression diagnostics Summary of diagnostics

Summary of diagnostics

Normality

Normal qq-plots should have points falling on the line

Constant variance

Residuals vs predicted values should have random scatter on y-axis
Residuals vs explanatory variable(s) should have random scatter on
y-axis

Independence

Residuals vs anything should not have a pattern

Linearity

Response vs explanatory variable should be linear
Lack-of-fit F-test should not be significant
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Regression diagnostics Summary of diagnostics

Default diagnostics in SAS
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Regression diagnostics Summary of diagnostics

Default diagnostics in R
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Interpretations using logs

Interpretations using logs

The most common transformation of either the response or explanatory
variable(s) is to take logarithms because

linearity will often then be approximately true,

the variance will likely be approximately constant, and

there is a (relatively) convenient interpretation.

We will talk about interpretation of β0 and β1 when

only the response is logged,

only the explanatory variable is logged, and

when both are logged.
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Interpretations using logs Neither response nor explanatory variable are logged

Neither response nor explanatory variable are logged

If
E [Y |X ] = β0 + β1X ,

then

β0 is the expected response when X is zero and

β1 is the expected change in the response for a one unit increase in
the explanatory variable.

For the following discussion,

Y is always going to be the original response and

X is always going to be the original explanatory variable.
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Interpretations using logs Neither response nor explanatory variable are logged

Example

Suppose

Y is corn yield per acre

X is fertilizer level in lbs/acre

Then, if
E [Y |X ] = β0 + β1X

β0 is the expected corn yield per acre when fertilizer level is zero and

β1 is the expected change in corn yield per acre when fertilizer is
increase by 1 lbs/acre.
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Interpretations using logs Response is logged

Response is logged

If
E [log(Y )|X ] = β0 + β1X or Median{Y |X} = eβ0eβ1X ,

then

β0 is the expected log(Y ) when X is zero and

β1 is the expected change in log(Y ) for a one unit increase in the
explanatory variable.

Alternatively,

eβ0 is the median of Y when X is zero and

eβ1 is the multiplicative effect on the median of Y for a one unit
increase in the explanatory variable.
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Interpretations using logs Response is logged

Response is logged

Suppose

Y is corn yield per acre

X is fertilizer level in lbs/acre

Then, if

E [log(Y )|X ] = β0 + β1X or Median{Y |X} = eβ0eβ1X

eβ0 is the median corn yield per acre when fertilizer level is 0 and

eβ1 is the multiplicative effect in median corn yield per acre when
fertilizer is increase by 1 lbs/acre.
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Interpretations using logs Explanatory variable is logged

Explanatory variable is logged

If
E [Y |X ] = β0 + β1 log(X ),

then

β0 is the expected response when log(X ) is zero and

β1 is the expected change in the response for a one unit increase in
log(X ).

Alternatively,

β0 is the expected response when X is 1 and

β1 log(d) is the expected change in the response when X increase
multiplicatively by d , e.g.

β1 log(2) is the expected change in the response for each doubling of X
or
β1 log(10) is the expected change in the response for each ten-fold
increase in X .
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Interpretations using logs Explanatory variable is logged

Explanatory variable is logged

Suppose

Y is corn yield per acre

X is fertilizer level in lbs/acre

Then, if
E [Y |X ] = β0 + β1 log(X )

β0 is the expected corn yield per acre when fertilizer level is 1 lb/acre
and

β1 log(2) is the expected change in corn yield when fertilizer level is
doubled.
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Interpretations using logs Both response and explanatory variable are logged

Both response and explanatory variable are logged

If

E [log(Y )|X ] = β0+β1 log(X ) or Median{Y |X} = eβ0eβ1 log(X ) = eβ0X β1 ,

then

β0 is the expected log(Y ) when log(X ) is zero and

β1 is the expected change in log(Y ) for a one unit increase in log(X ).

Alternatively,

eβ0 is the median of Y when X is 1 and

dβ1 is the multiplicative change in the median of the response when
X increase multiplicatively by d , e.g.

2β1 is the multiplicative effect on the median of the response for each
doubling of X or
10β1 is the multiplicative effect on the median of the response for each
ten-fold increase in X .
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Interpretations using logs Both response and explanatory variable are logged

Both response and explanatory variable are logged

Suppose

Y is corn yield per acre

X is fertilizer level in lbs/acre

Then, if

E [log(Y )|X ] = β0+β1 log(X ) or Median{Y |X} = eβ0eβ1 log(X ) = eβ0X β1

eβ0 is the median corn yield per acre when fertilizer level is 1 lb/acre
and

2β1 is the multiplicative effect on median corn yield per acre when
fertilizer level doubles.

Jarad Niemi (Iowa State) Regression diagnostics October 24, 2014 45 / 46



Interpretations using logs Both response and explanatory variable are logged

Summary of interpretations when using logarithms

When using the log of the response,

β0 will affect the median response
β1 will affect the multiplicative change in the median response

When using the log of the explanatory variable (X ),

β0 will affect the response when X = 1
β1 will affect the change in the response when there is a multiplicative
change in X

To construct confidence intervals for eβ, find a confidence interval for β
and exponentiate the endpoints, i.e. if (L,U) is a confidence interval for β,
then (eL, eU) is a confidence interval for eβ.
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