STAT 401A - Statistical Methods for Research Workers Regression diagnostics

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 24, 2014

All models are wrong!

George Box (Empirical Model-Building and Response Surfaces, 1987): All models are wrong, but some are useful.

http:

//stats.stackexchange.com/questions/57407/what-is-the-meaning-of-all-models-are-wrong-but-some-are-useful

"All models are wrong" that is, every model is wrong because it is a simplification of reality. Some models, especially in the "hard" sciences, are only a little wrong. They ignore things like friction or the gravitational effect of tiny bodies. Other models are a lot wrong - they ignore bigger things.

"But some are useful" - simplifications of reality can be quite useful. They can help us explain, predict and understand the universe and all its various components.

This isn't just true in statistics! Maps are a type of model; they are wrong. But good maps are very useful.

Regression

The simpler linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

this can be rewritten as

$$Y_i = eta_0 + eta_1 X_i + e_i \quad e_i \stackrel{ind}{\sim} N(0, \sigma^2)$$

where we estimate the errors via the residuals

$$r_i = \hat{e}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i).$$

Key assumptions are:

- Normality of the errors
- Constant variance of the errors
- Independence of the errors
- Linearity between mean response and explanatory variable

Histograms with best fitting bell curves

Normal data

Jarad Niemi (Iowa State)

Normal QQ-plot

Definition

The quantile-quantile or qq-plot is an exploratory graphical device used to check the validity of a distributional assumption for a data set.

A normal qq-plot graphs the theoretical quantiles from a normal distribution versus the observed quantiles. With a line that indicates perfect normality.

Remark The bottom line is that, if the distribution assumption is satisfied, the points should fall roughly along the line. Systematic variation from this line indicates skewness,

Normality

Normal

Normal (n=10)

Normal(n=100)

Normality

Normal (n=1000)

Not normal (n=10)

Not normal (n=100)

Not normal (n=1000)

Summary

For normal qq-plots with (standardized) residuals (y-axis) vs theoretical quantiles (x-axis), the following interpretations apply

- If the residuals fall roughly along the line, then normality is reasonable.
- If the residuals have a U pattern, then there is right-skewness.
- If the residuals have an upside down U pattern, then there is left-skewness.
- If the residuals have an S pattern, then there are light tails (we are not too concerned about this situation because our inferences will be conservative).
- If the residuals have a rotated Z pattern, then there are heavy tails.

Other patterns are certainly possible, but these are the most common.

Jarad Niemi (Iowa State)

Constant variance

Recall the model

$$Y_i = eta_0 + eta_1 X_i + e_i \quad e_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

so the variance for the e_i is constant.

To assess this assumption, we look at plots of residuals vs anything and look for patterns that show different "spreads", e.g.

- funnels
- football shapes

The most common way this assumption is violated is by having increasing variance with increasing mean, thus we often look at a residuals vs predicted (fitted) mean plot.

Constant variance

Constant variance

Predicted mean

Jarad Niemi (Iowa State)

Regression diagnostics

October 24, 2014 16 / 46

Extreme non-constant variance (funnel)

Predicted mean

Jarad Niemi (Iowa State)

Residual

Regression diagnostics

Extreme non-constant variance (funnel)

Predicted mean

Residual

Non-constant variance (n=10, $\sigma_2/\sigma_1 = 4$)

Non-constant variance (n=100, $\sigma_2/\sigma_1 = 4$)

Non-constant variance (n=1000, $\sigma_2/\sigma_1 = 4$)

Extreme non-constant variance (football)

Predicted mean

|--|

Independence

Lack of independence includes

- Cluster effect
- Serial correlation
- Spatial association

Make plots of residuals vs relevant explanatory variable(s) and look for patterns, e.g.

- Residuals vs groups
- Residuals vs time (or observation number)
- Residuals vs spatial variable

No evidence for lack of independence

Evidence for lack of independence

Linearity

Assess using scatterplots of (transformed) response vs (transformed) explanatory variable:

Testing Composite hypotheses

Comparing two models

- H_0 : (reduced)
- *H*₁ : (full)

Do the following

- 1. Calculate extra sum of squares.
- 2. Calculate extra degrees of freedom
- 3. Calculate

 $\mathsf{F}\text{-statistic} = \frac{\mathsf{Extra \ sum \ of \ squares} \ / \ \mathsf{Extra \ degrees \ of \ freedom}}{\hat{\sigma}_{full}^2}$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = extra degrees of freedom
 - denominator degrees of freedom = degrees of freedom in estimating $\hat{\sigma}_{full}^2$

Lack-of-fit F-test

Let Y_{ij} be the *i*th observation from the *j*th group where the group is defined by those observations having the same explanatory variable value (X_j) .

Two models:

 $\begin{array}{ll} \text{ANOVA:} & Y_{ij} \stackrel{ind}{\sim} \textit{N}(\mu_j, \sigma^2) & \text{(full)} \\ \text{Regression:} & Y_{ij} \stackrel{ind}{\sim} \textit{N}(\beta_0 + \beta_1 X_j, \sigma^2) & \text{(reduced)} \end{array}$

- Regression model is reduced:
 - ANOVA has J parameters for the mean
 - Regression has 2 parameters for the mean
 - Set $\mu_j = \beta_0 + \beta_1 X_j$.
- Small pvalues indicate a lack-of-fit, i.e. the reduced model is not adequate.
- Lack-of-fit F-test requires multiple observations at a few X_j values!

Telomere length

Telomere length vs years since diagnosis

Telomere length

Telomere length vs years since diagnosis

SAS code

DATA t;					
INFILE 'telomeres.csv' D INPUT years length;	SD FIRSTOBS=2;				
PROC REG DATA=t; MODEL length = years / CU RUN;	LB LACKFIT;				
	Depen	The REG Procedur Model: MODEL1 dent Variable: 1	e ength		
	Number of O Number of O	bservations Read bservations Used	39 39		
	An	alysis of Varian	ce		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	0.22777	0.22777	8.42	0.0062
Error	37	1.00033	0.02704		
Lack of Fit	9	0.18223	0.02025	0.69	0.7093
Pure Error	28	0.81810	0.02922		
Corrected Total	38	1.22810			

Indicates no evidence for a lack of fit, i.e. regression seems adequate.

```
# Use as.factor to turn a continuous variable into a categorical variable
m_anova = lm(telomere.length ~ as.factor(years), Telomeres)
m_reg = lm(telomere.length ~ years , Telomeres)
anova(m_reg, m_anova)
Analysis of Variance Table
Model 1: telomere.length ~ years
Model 2: telomere.length ~ as.factor(years)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 37 1.000
2 28 0.818 9 0.182 0.69 0.71
```

No evidence of a lack of fit.

Lack-of-fit F-test summary

- Lack-of-fit F-test tests the assumption of linearity
- Needs multiple observations at various explanatory variable values
- Small pvalue indicates a lack-of-fit, i.e. means are not linear
 - Transform response, e.g. log
 - Transform explanatory variable
 - Add other explanatory variable(s)

Summary of diagnostics

- Normality
 - Normal qq-plots should have points falling on the line
- Constant variance
 - Residuals vs predicted values should have random scatter on y-axis
 - Residuals vs explanatory variable(s) should have random scatter on y-axis
- Independence
 - Residuals vs anything should not have a pattern
- Linearity
 - Response vs explanatory variable should be linear
 - Lack-of-fit F-test should not be significant

Default diagnostics in SAS

Jarad Niemi (Iowa State)

Default diagnostics in R

Regression diagnostics

Interpretations using logs

The most common transformation of either the response or explanatory variable(s) is to take logarithms because

- linearity will often then be approximately true,
- the variance will likely be approximately constant, and
- there is a (relatively) convenient interpretation.

We will talk about interpretation of β_0 and β_1 when

- only the response is logged,
- only the explanatory variable is logged, and
- when both are logged.

Neither response nor explanatory variable are logged

lf

$$E[Y|X] = \beta_0 + \beta_1 X,$$

then

- β_0 is the expected response when X is zero and
- β₁ is the expected change in the response for a one unit increase in the explanatory variable.

For the following discussion,

- Y is always going to be the original response and
- X is always going to be the original explanatory variable.

Example

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[Y|X] = \beta_0 + \beta_1 X$$

- β_0 is the expected corn yield per acre when fertilizer level is zero and
- β_1 is the expected change in corn yield per acre when fertilizer is increase by 1 lbs/acre.

Response is logged

lf

$$E[\log(Y)|X] = \beta_0 + \beta_1 X$$
 or $Median\{Y|X\} = e^{\beta_0}e^{\beta_1 X}$,

then

- β_0 is the expected log(Y) when X is zero and
- β₁ is the expected change in log(Y) for a one unit increase in the explanatory variable.

Alternatively,

- e^{β_0} is the median of Y when X is zero and
- e^{β1} is the multiplicative effect on the median of Y for a one unit increase in the explanatory variable.

Response is logged

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[\log(Y)|X] = \beta_0 + \beta_1 X$$
 or $Median\{Y|X\} = e^{\beta_0}e^{\beta_1 X}$

e^{β0} is the median corn yield per acre when fertilizer level is 0 and
 e^{β1} is the multiplicative effect in median corn yield per acre when fertilizer is increase by 1 lbs/acre.

Explanatory variable is logged

lf

$$E[Y|X] = \beta_0 + \beta_1 \log(X),$$

then

- β_0 is the expected response when $\log(X)$ is zero and
- β₁ is the expected change in the response for a one unit increase in log(X).

Alternatively,

- β_0 is the expected response when X is 1 and
- β₁ log(d) is the expected change in the response when X increase multiplicatively by d, e.g.
 - $\beta_1 \log(2)$ is the expected change in the response for each doubling of X or
 - $\beta_1 \log(10)$ is the expected change in the response for each ten-fold increase in X.

Explanatory variable is logged

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[Y|X] = \beta_0 + \beta_1 \log(X)$$

- β_0 is the expected corn yield per acre when fertilizer level is 1 lb/acre and
- $\beta_1 \log(2)$ is the expected change in corn yield when fertilizer level is doubled.

Both response and explanatory variable are logged

lf

 $E[\log(Y)|X] = \beta_0 + \beta_1 \log(X) \quad \text{or} \quad \textit{Median}\{Y|X\} = e^{\beta_0} e^{\beta_1 \log(X)} = e^{\beta_0} X^{\beta_1},$

then

- β_0 is the expected log(Y) when log(X) is zero and
- β_1 is the expected change in log(Y) for a one unit increase in log(X). Alternatively,
 - e^{β_0} is the median of Y when X is 1 and
 - d^{β1} is the multiplicative change in the median of the response when X increase multiplicatively by d, e.g.
 - 2^{β_1} is the multiplicative effect on the median of the response for each doubling of X or
 - 10^{β_1} is the multiplicative effect on the median of the response for each ten-fold increase in X.

Both response and explanatory variable are logged

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

 $E[\log(Y)|X] = \beta_0 + \beta_1 \log(X) \quad \text{or} \quad Median\{Y|X\} = e^{\beta_0} e^{\beta_1 \log(X)} = e^{\beta_0} X^{\beta_1}$

- e^{β_0} is the median corn yield per acre when fertilizer level is 1 lb/acre and
- 2^{β_1} is the multiplicative effect on median corn yield per acre when fertilizer level doubles.

Summary of interpretations when using logarithms

• When using the log of the response,

- β_0 will affect the median response
- β_1 will affect the multiplicative change in the median response
- When using the log of the explanatory variable (X),
 - β_0 will affect the response when X = 1
 - β_1 will affect the change in the response when there is a multiplicative change in X

To construct confidence intervals for e^{β} , find a confidence interval for β and exponentiate the endpoints, i.e. if (L, U) is a confidence interval for β , then (e^{L}, e^{U}) is a confidence interval for e^{β} .