STAT 401A - Statistical Methods for Research Workers
 Multiple regression models

Jarad Niemi (Dr. J)
Iowa State University

last updated: November 7, 2014

Multiple regression

Recall the simple linear regression model is

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

The multiple regression model is

$$
Y_{i} \stackrel{\text { ind }}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}, \sigma^{2}\right)
$$

where

- Y_{i} is the response for observation i and
- $X_{i, p}$ is the $p^{t h}$ explanatory variable for observation i.

We may also write

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right) \quad \text { or } \quad Y_{i}=\mu_{i}+e_{i}, e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

where

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
$$

Explanatory variables

There is a lot of flexibility in the mean

$$
\mu_{i}=E\left[Y_{i} \mid X_{i, 1}, \ldots, X_{i, p}\right]=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
$$

as there are many possibilities for the explanatory variables $X_{i, 1}, \ldots, X_{i, p}$:

- Higher order terms $\left(X^{2}\right)$
- Additional explanatory variables $\left(X_{1}+X_{2}\right)$
- Dummy variables for categorical variables $\left(X_{1}=\mathrm{I}()\right)$
- Interactions ($X_{1} X_{2}$)
- Continuous-continuous
- Continuous-categorical
- Categorical-categorical

Interpretation

Model:

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}, \sigma^{2}\right)
$$

The interpretation is

- β_{0} is the expected value of the response Y_{i} when all explanatory variables are zero.
- $\beta_{p}, p \neq 0$ is the expected increase in the response for a one-unit increase in the $p^{\text {th }}$ explanatory variable when all other explanatory variables are held constant.
- R^{2} is the proportion of the variance in the response explained by the model

Higher order terms $\left(X^{2}\right)$

Let

- Y_{i} be the distance for the $i^{\text {th }}$ run of the experiment and
- H_{i} be the height for the $i^{t h}$ run of the experiment.

Simple linear regression assumes

$$
\begin{equation*}
Y_{i} \stackrel{\text { ind }}{\sim} N\left(\beta_{0}+\beta_{1} H_{i}\right. \tag{2}
\end{equation*}
$$

The quadratic multiple regression assumes

$$
Y_{i} \stackrel{\text { ind }}{\sim} N\left(\beta_{0}+\beta_{1} H_{i}+\beta_{2} H_{i}^{2} \quad, \sigma^{2}\right)
$$

The cubic multiple regression assumes

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} H_{i}+\beta_{2} H_{i}^{2}+\beta_{3} H_{i}^{3}, \sigma^{2}\right)
$$

Case1001

SAS code and output

```
DATA case1001;
    INFILE 'case1001.csv' DSD FIRSTOBS=2;
    INPUT distance height;
    height2 = height*height;
    height3 = height*height2;
# PROC REG allows multiple MODEL statements
PROC REG DATA=case1001;
    MODEL distance = height;
    MODEL distance = height height2;
    MODEL distance = height height2 height3;
    RUN;
```

	Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		
Intercept	1	269.71246	24.31239	11.09	0.0001		
height	1	0.33334	0.04203	7.93	0.0005		
Intercept	1	199.91282	16.75945	11.93	0.0003		
height	1	0.70832	0.07482	9.47	0.0007		
height2	1	-0.00034369	0.00006678	-5.15	0.0068		
Intercept	1	155.77551	8.32579	18.71	0.0003		
height	1	1.11530	0.06567	16.98	0.0004		
height2	1	-0.00124	0.00013842	-8.99	0.0029		
height3	1	$5.477104 \mathrm{E}-7$	$8.327329 \mathrm{E}-8$	6.58	0.0072		

SAS code and output

```
DATA case1001;
    INFILE 'case1001.csv' DSD FIRSTOBS=2;
    INPUT distance height;
    height2 = height ** 2;
    height3 = height ** 3;
PROC GLM DATA=case1001;
    MODEL distance = height height2 height3;
/* PROC GLM allows the variable construction within the MODEL statement
    and provides nicer output (not shown here) */
DATA case1001;
    INFILE 'case1001.csv' DSD FIRSTOBS=2;
    INPUT distance height;
/* This shorthand puts in H, H^2, and H^3 */
PROC GLM DATA=case1001;
    MODEL distance = height|height|height;
/* This only puts H^3 */
PROC GLM DATA=case1001;
    MODEL distance = height*height*height;
```


R code and output

```
# Construct the variables by hand
case1001$Height2 = case1001$Height^2
case1001$Height3 = case1001$Height^3
m1 = lm(Distance ~Height, case1001)
m2 = lm(Distance~Height+Height2, case1001)
m3 = lm(Distance ~Height+Height2+Height3, case1001)
coefficients(m1)
(Intercept) Height
    269.7125 0.3333
coefficients(m2)
\begin{tabular}{rrr} 
(Intercept) & Height & Height2 \\
\(1.999 \mathrm{e}+02\) & \(7.083 \mathrm{e}-01\) & \(-3.437 \mathrm{e}-04\)
\end{tabular}
coefficients(m3)
\begin{tabular}{rrrr} 
(Intercept) & Height & Height2 & Height3 \\
\(1.558 \mathrm{e}+02\) & \(1.115 \mathrm{e}+00\) & \(-1.245 \mathrm{e}-03\) & \(5.477 \mathrm{e}-07\)
\end{tabular}
```


R code and output

```
# Let R construct the variables for you
m = lm(Distance~poly(Height, 3, raw=TRUE), case1001)
summary (m)
Call:
lm(formula = Distance ~ poly(Height, 3, raw = TRUE), data = case1001)
Residuals:
\begin{tabular}{rrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
-2.4036 & 3.5809 & 1.8917 & -4.4688 & -0.0804 & 2.3216 & -0.8414
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & value & \(\operatorname{Pr}(>|t|)\) & \\
\hline (Intercept) & \(1.56 \mathrm{e}+02\) & \(8.33 \mathrm{e}+00\) & 18.71 & 0.00033 & \\
\hline poly(Height, 3, raw = TRUE)1 & \(1.12 \mathrm{e}+00\) & \(6.57 \mathrm{e}-02\) & 16.98 & 0.00044 & * \\
\hline poly(Height, 3, raw = TRUE)2 & \(-1.24 e-03\) & \(1.38 \mathrm{e}-04\) & -8.99 & 0.00290 & ** \\
\hline poly(Height, 3, raw \(=\) TRUE) 3 & \(5.48 \mathrm{e}-07\) & \(8.33 \mathrm{e}-08\) & 6.58 & 0.00715 & ** \\
\hline gnif. codes: \(0{ }^{\text {'***' }} 0.001\) & '**' 0.0 & *' 0.05 & 0.1 & & \\
\hline
\end{tabular}
Residual standard error: 4.01 on 3 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.6e+03 on 3 and 3 DF, p-value: 2.66e-05
```


Longnose Dace Abundance

From http://udel.edu/~mcdonald/statmultreg.html:
I extracted some data from the Maryland Biological Stream Survey. ... The dependent variable is the number of Longnose Dace (Rhinichthys cataractae) per 75 -meter section of [a] stream. The independent variables are the area (in acres) drained by the stream; the dissolved oxygen (in $\mathrm{mg} / \mathrm{liter}$); the maximum depth (in cm) of the 75-meter segment of stream; nitrate concentration ($\mathrm{mg} / \mathrm{liter} \mathrm{);} \mathrm{sulfate}$ concentration ($\mathrm{mg} / \mathrm{liter}$); and the water temperature on the sampling date (in degrees C).

Consider the model

$$
Y_{i} \stackrel{\text { ind }}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}, \sigma^{2}\right)
$$

where

- Y_{i} : count of Longnose Dace in stream i
- $X_{i, 1}$: maximum depth (in cm) of stream i
- $X_{i, 2}$: nitrate concentration ($\mathrm{mg} /$ liter) of stream i

Exploratory


```
DATA dace;
    INFILE 'Longnose Dace.csv' DSD FIRSTOBS=2;
    INPUT stream $ count acreage do2 maxdepth no3 so4 temp;
PROC REG DATA=dace;
    MODEL count = maxdepth no3;
    RUN;
The REG Procedure
Model: MODEL1
Dependent Variable: count
Number of Observations Read 67
Number of Observations Used 67
```


R code and output

```
d = read.csv("longnosedace.csv")
m = lm(count~no3+maxdepth,d)
summary (m)
Call:
lm(formula = count ~ no3 + maxdepth, data = d)
Residuals:
Min 1Q Median 3 3Q Max
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrl} 
(Intercept) & -17.555 & 15.959 & -1.10 & 0.2754 & \\
no3 & 8.285 & 2.957 & 2.80 & \(0.0067_{* *}^{* *}\) \\
maxdepth & 0.481 & 0.181 & 2.66 & \(0.0100^{* *}\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.4 on 64 degrees of freedom
Multiple R-squared: 0.194, Adjusted R-squared: 0.168
F-statistic: }7.68\mathrm{ on 2 and 64 DF, p-value: 0.00102
```


Interpretation

- Intercept (β_{0}): The expected count of Longnose Dace when maximum depth and nitrate concentration are both zero is -18 .
- Coefficient for maxdepth $\left(\beta_{1}\right)$: Holding nitrate concentration constant, each cm increase in maximum depth is associated with an additional 0.48 Longnose Dace counted on average.
- Coefficient for no3 $\left(\beta_{2}\right)$: Holding maximum depth constant, each $\mathrm{mg} /$ liter increase in nitrate concentration is associated with an addition 8.3 Longnose Dace counted on average.
- Coefficient of determination $\left(R^{2}\right)$: The model explains 19% of the variability in the count of Longnose Dace.

Using a categorical variable as an explanatory variable.

Regression with a categorical variable

- Choose one of the levels as the reference level, e.g. N/N85
- Construct dummy variables using indicator functions, i.e.

$$
\mathrm{I}(A)= \begin{cases}1 & A \text { is TRUE } \\ 0 & A \text { is FALSE }\end{cases}
$$

for the other levels, e.g.

$$
\begin{aligned}
& X_{i, 1}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{N} / \mathrm{R} 40) \\
& X_{i, 2}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{N} / \mathrm{R} 50) \\
& X_{i, 3}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{NP}) \\
& X_{i, 4}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{R} / \mathrm{R} 50) \\
& X_{i, 5}=\mathrm{I} \text { (diet for observation } i \text { is lopro) }
\end{aligned}
$$

- Estimate the parameters of a multiple regression model using these dummy variables.

SAS code and output

```
DATA case0501;
    INFILE 'case0501.csv' DSD FIRSTOBS=2;
    INPUT lifetime diet $;
PROC GLM DATA=case0501;
    CLASS diet(REF='N/N85'); /* by default, SAS uses the alphabetically last group as the reference level */
    MODEL lifetime=diet / SOLUTION;
    RUN;
```

The GLM Procedure
Dependent Variable: lifetime

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the
Jarad Niemi (lowa State)
November 7, 2014

R code and output

```
# by default, R uses the alphabetically first group as the reference level
case0501$Diet = relevel(case0501$Diet, ref='N/N85')
m = lm(Lifetime~Diet, case0501)
summary(m)
Call:
lm(formula = Lifetime ~ Diet, data = case0501)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-25.517 & -3.386 & 0.814 & 5.183 & 10.014
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Error & value & \(\operatorname{Pr}(>|t|)\) & \\
\hline (Intercept) & 32.691 & 0.885 & 36.96 & \(<2 \mathrm{e}-16\) & *** \\
\hline DietN/R40 & 12.425 & 1.235 & 10.06 & \(<2 \mathrm{e}-16\) & *** \\
\hline DietN/R50 & 9.606 & 1.188 & 8.09 & 1.1e-14 & *** \\
\hline DietNP & -5.289 & 1.301 & -4.07 & \(5.9 \mathrm{e}-05\) & *** \\
\hline DietR/R50 & 10.194 & 1.257 & 8.11 & \(8.9 \mathrm{e}-15\) & * \\
\hline Dietlopro & 6.994 & 1.257 & 5.57 & \(5.2 \mathrm{e}-08\) & *** \\
\hline \multicolumn{2}{|l|}{Signif. codes: 0 '} & 001 '* & 0.01 & '*' 0.05 & \\
\hline
\end{tabular}
Residual standard error: 6.68 on 343 degrees of freedom
Multiple R-squared: 0.454, Adjusted R-squared: 0.446
F-statistic: 57.1 on 5 and 343 DF, p-value: <2e-16
```


Interpretation

- $\beta_{0}=E\left[Y_{i} \mid\right.$ reference level $]$, i.e. expected response for the reference level
Note: the only way $X_{i, 1}=\cdots=X_{i, p}=0$ is if all indicators are zero, i.e. at the reference level.
- $\beta_{p}, p>0$: expected change in the response moving from the reference level to the level associated with the $p^{\text {th }}$ dummy variable Note: the only way for $X_{i, p}$ to increase by one and all other indicators to stay constant is if initially $X_{i, 1}=\cdots=X_{i, p}=0$ and now $X_{i, p}=1$

For example,

- The expected lifetime for mice on the N/N85 diet is 32.7 weeks.
- The expected increase in lifetime for mice on the N/R40 diet compared to the N/N85 diet is 12.4 weeks.
- The model explains 45% of the variability in mice lifetimes.

Using a categorical variable as an explanatory variable.

Interactions

Why an interaction?
Two explanatory variables are said to interact if the effect that one of them has on the mean response depends on the value of the other.

For example,

- Longnose dace: The effect of nitrate (no3) on longnose dace count depends on the maxdepth. (Continuous-continuous)
- Case1002: The effect of mass on energy depends on the species type. (Continuous-categorical)
- Yield: the effect of tillage method depends on the fertilizer brand (Categorical-categorical)

Continuous-continuous interaction

For observation i, let

- Y_{i} be the response
- $X_{i, 1}$ be the first explanatory variable and
- $X_{i, 2}$ be the second explanatory variable.

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}
$$

The mean with the interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{3} X_{i, 1} X_{i, 2}
$$

Intepretation - main effects only

Let $X_{i, 1}=x_{1}$ and $X_{i, 2}=x_{2}$, then we can rewrite the line (μ) as

$$
\mu=\left(\beta_{0}+\beta_{2} x_{2}\right)+\beta_{1} x_{1}
$$

which indicates that the intercept of the line for x_{1} depends on the value of x_{2}.

Similarly,

$$
\mu=\left(\beta_{0}+\beta_{1} x_{1}\right)+\beta_{2} x_{2}
$$

which indicates that the intercept of the line for x_{2} depends on the value of x_{1}.

Intepretation - with an interaction

Let $X_{i, 1}=x_{1}$ and $X_{i, 2}=x_{2}$, then we can rewrite the mean (μ) as

$$
\mu=\left(\beta_{0}+\beta_{2} x_{2}\right)+\left(\beta_{1}+\beta_{3} x_{2}\right) x_{1}
$$

which indicates that both the intercept and slope for x_{1} depend on the value of x_{2}.

Similarly,

$$
\mu=\left(\beta_{0}+\beta_{1} x_{1}\right)+\left(\beta_{2}+\beta_{3} x_{1}\right) x_{2}
$$

which indicates that both the intercept and slope for x_{2} depend on the value of x_{1}.

Visualizing the models

Main effects only

with an interaction

SAS code and output - main effects only

```
DATA longnosedace;
    INFILE 'longnosedace.csv' DSD FIRSTOBS=2;
    INPUT stream $ count acreage do2 maxdepth no3 so4 temp;
PROC GLM DATA=longnosedace;
    MODEL count = no3 maxdepth;
    RUN;
```

The GLM Procedure

Dependent Variable: count

SAS code and output - with an interaction

```
PROC GLM DATA=longnosedace;
    MODEL count = no3|maxdepth;
    RUN;
```

The GLM Procedure

Dependent Variable: count

R code and output - main effects only

```
d = read.csv("longnosedace.csv")
mM = lm(count ~ no3+maxdepth, d)
summary (mM)
Call:
lm(formula = count ~ no3 + maxdepth, data = d)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q Median & 3Q & Max \\
-55.06 & -27.70 & -8.68 & 11.79 & 165.31
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & -17.555 & 15.959 & -1.10 & 0.2754 & \\
no3 & 8.285 & 2.957 & 2.80 & \(0.0067^{* *}\) \\
maxdepth & 0.481 & 0.181 & 2.66 & \(0.0100^{* *}\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.4 on 64 degrees of freedom
Multiple R-squared: 0.194, Adjusted R-squared: 0.168
F-statistic: }7.68\mathrm{ on 2 and 64 DF, p-value: 0.00102
```


R code and output - with an interaction

```
mI = lm(count ~ no3*maxdepth, d)
summary (mI)
Call:
lm(formula = count ~ no3 * maxdepth, data = d)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-65.11 & -21.40 & -9.56 & 5.95 & 151.07
\end{tabular}
Coefficients:
```



```
Residual standard error: 42.7 on 63 degrees of freedom
Multiple R-squared: 0.232, Adjusted R-squared: 0.195
F-statistic: 6.34 on 3 and 63 DF, p-value: 0.000797
```


Visualizing the model

Main effects only

with an interaction

Continuous-categorical interaction

Let category A be the reference level. For observation i, let

- Y_{i} be the response
- $X_{i, 1}$ be the continuous explanatory variable,
- B_{i} be a dummy variable for category B , and
- C_{i} be a dummy variable for category C.

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i}
$$

The mean with the interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} X_{i, 1} B_{i}+\beta_{5} X_{i, 1} C_{i}
$$

Think about this model as a different line for each level of the categorical explanatory variable.

Interpretation for the main effect model

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i}
$$

For each category, the line is

Category	Line (μ)	
A	β_{0}	$+\beta_{1} X$
B	$\left(\beta_{0}+\beta_{2}\right)$	$+\beta_{1} X$
C	$\left(\beta_{0}+\beta_{3}\right)$	$+\beta_{1} X$

Each category has a different intercept, but a common slope.

Interpretation for the model with an interaction

The model with an interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} X_{i, 1} B_{i}+\beta_{5} X_{i, 1} C_{i}
$$

For each category, the line is

Category	Line (μ)	
A	β_{0}	$+\beta_{1}$
B	$\left(\beta_{0}+\beta_{2}\right)$	$+\left(\beta_{1}+\beta_{4}\right) X$
C	$\left(\beta_{0}+\beta_{3}\right)$	$+\left(\beta_{1}+\beta_{5}\right) X$

Each category has its own intercept and its own slope.

Visualizing the models

Main effects only

Continuous explanatory variable
with an interaction

Continuous explanatory variable

SAS code and output - main effects only

```
DATA case1002;
    INFILE 'case1002.csv' DSD FIRSTOBS=2;
    LENGTH Type $22.;
    INPUT Mass Type $ Energy;
    lMass = log(Mass);
    lEnergy = log(Energy);
PROC GLM DATA=case1002;
    CLASS Type(REF='non-echolocating bats');
    MODEL lEnergy = Type 1Mass / SOLUTION;
```

	Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	29.42148268	9.80716089	283.59	$<.0001$
Error	16	0.55331753	0.03458235		
Corrected Total	19	29.97480021			

R-Square	Coeff Var	Root MSE	lEnergy Mean
0.981541	7.491872	0.185963	2.482201

	Standard				
Parameter	Estimate	Error	t Value	Pr $>\|t\|$	
Intercept		-1.576360194	B	0.28723642	-5.49
Type	echolocating bats	0.078663681	B	0.20267926	0.39
Type	non-echolocating birds	0.102261918	B	0.11418264	0.90
Type	non-echolocating bats	0.000000000	B	.	0.7030
lMass		0.814957494	0.04454143	18.30	$<.0001$

[^0]
SAS code and output - with an interaction

```
PROC GLM DATA=case1002;
    CLASS Type(REF='non-echolocating bats');
    MODEL lEnergy = Type|lMass / SOLUTION;
```

	Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	29.46993221	5.89398644	163.44	$<.0001$
Error	14	0.50486800	0.03606200		
Corrected Total	19	29.97480021			
		R-Square	Coeff Var	Root MSE	1Energy Mean
	0.983157	7.650468	0.189900	2.482201	

		Standard		
Parameter	Estimate	Error	t Value	Pr $>\|t\|$
Intercept	-0.202447571 B	1. 26133425	-0.16	0.8748
Type echolocating bats	-1.268067693 В	1. 28542004	-0.99	0.3406
Type non-echolocating birds	-1.378390198 B	1. 29524130	-1.06	0.3053
Type non-echolocating bats	0.000000000 B	.	.	
lMass	0.589782057 B	0.20613801	2.86	0.0126
1Mass*Type echolocating bats	0.214874992 B	0.22362264	0.96	0.3529
1Mass*Type non-echolocating birds	0.245588273 B	0.21343221	1.15	0.2691
lMass*Type non-echolocating bats	0.000000000 B			

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

R code and output - main effects only

```
case1002$Type = relevel(case1002$Type, ref='non-echolocating bats') # match SAS
summary(mM <- lm(log(Energy) ~log(Mass)+Type, case1002))
Call:
lm(formula = log(Energy) ~ log(Mass) + Type, data = case1002)
Residuals:
    Min 1Q Median 3Q Max
-0.2322-0.1220-0.0364 0.1257 0.3446
Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & d. Error & t value & Pr \\
\hline (Intercept) & -1.5764 & 0.2872 & -5.49 & \(5.0 \mathrm{e}-05\) \\
\hline \(\log\) (Mass) & 0.8150 & 0.0445 & 18.30 & \(3.8 \mathrm{e}-12\) \\
\hline Typeecholocating bats & 0.0787 & 0.2027 & 0.39 & 0.70 \\
\hline Typenon-echolocating birds & 0.1023 & 0.1142 & 0.90 & 0.38 \\
\hline \multicolumn{5}{|l|}{Signif. codes: \(0{ }^{\prime * * * '} 0.001^{\prime * * '} 0.01{ }^{\prime *} 0.05{ }^{\prime} .{ }^{\prime} 0.1{ }^{\prime} 1\)} \\
\hline
\end{tabular}
Residual standard error: 0.186 on 16 degrees of freedom
Multiple R-squared: 0.982, Adjusted R-squared: 0.978
F-statistic: }284\mathrm{ on 3 and 16 DF, p-value: 4.46e-14
```


R code and output - with an interaction

```
summary(mI <- lm(log(Energy)~log(Mass)*Type, case1002))
Call:
lm(formula = log(Energy) ~ log(Mass) * Type, data = case1002)
Residuals:
    Min 1Q Median 3Q Max
-0.2515 -0.1264 -0.0095 0.0812 0.3284
Coefficients:
(Intercept)
log(Mass) 0.590 0.206 2.86 0.013 *
Typeecholocating bats 
Typenon-echolocating birds }\quad\begin{array}{lllll}{-1.378}&{1.295}&{-1.06}&{0.305}
log(Mass):Typeecholocating bats
    0.215 0.224 0.96 0.353
log(Mass):Typenon-echolocating birds 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.19 on 14 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.977
F-statistic: }163\mathrm{ on 5 and 14 DF, p-value: 6.7e-12
```


Visualizing the models

Main effects only

with an interaction

Categorical-categorical

Let category A and type 0 be the reference level. For observation i, let

- Y_{i} be the response,
- 1_{i} be a dummy variable for type 1 ,
- B_{i} be a dummy variable for category B , and
- C_{i} be a dummy variable for category C.

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i}
$$

The mean with an interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} 1_{i} B_{i}+\beta_{5} 1_{i} C_{i}
$$

Interpretation for the main effects model

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i} .
$$

- β_{0} is the expected response for category A and type 0
- β_{1} is the change in response for moving from type 0 to type 1
- β_{2} is the change in response for moving from category A to category B
- β_{3} is the change in response for moving from category A to category C

The means are then

	Category			
Type	A			
0	β_{0}	$\beta_{0}+\beta_{2}$	$\beta_{0}+\beta_{3}$	
1	$\beta_{0}+\beta_{1}$	$\beta_{0}+\beta_{1}+\beta_{2}$	$\beta_{0}+\beta_{1}+\beta_{3}$	

Interpretation for the model with an interaction

The mean with an interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} 1_{i} B_{i}+\beta_{5} 1_{i} C_{i}
$$

- β_{0} is the expected response for category A and type 0
- β_{1} is the change in response for moving from type 0 to type 1 for category A
- β_{2} is the change in response for moving from category A to category B for type 0
- β_{3} is the change in response for moving from category A to category C for type 0
- β_{4} is the difference in change in response for moving from category A to category B for type 1 compared to type 0
- β_{5} is the difference in change in response for moving from category A to category C for type 1 compared to type 0

The means are then

	Category							
Type	A				B			
0	β_{0}	β_{0}	$+\beta_{2}$	β_{0}	$+\beta_{3}$			
1	$\beta_{0}+\beta_{1}$	$\beta_{0}+\beta_{1}+\beta_{2}+\beta_{4}$	$\beta_{0}+\beta_{1}+\beta_{3}+\beta_{5}$					

This is referred to as the cell-means model.

Visualizing the models

with interaction

SAS code and output - main effects only

```
DATA case1301;
    INFILE 'case1301.csv' DSD FIRSTOBS=2;
    INPUT Cover Block $ Treat $;
PROC GLM DATA=case1301;
    WHERE Block IN ('B1','B2') AND Treat IN ('L','Lf','LfF');
    CLASS Block Treat; /* reference levels default to 1st alphabetically */
    MODEL Cover = Block Treat / SOLUTION;
```


NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

SAS code and output - with an interaction

```
PROC GLM DATA=case1002;
    WHERE Block IN ('B1','B2') AND Treat IN ('L','Lf','LfF');
    CLASS Block Treat;
    MODEL Cover = Block|Treat / SOLUTION;
```

Sum of

| Source | DF | Squares | Mean Square | F Value | Pr > F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 5 | 36.75000000 | 7.35000000 | 4.64 | 0.0443 |
| Error | 6 | 9.50000000 | 1.58333333 | | |
| Corrected Total | 11 | 46.25000000 | | | |

R-Square	Coeff Var	Root MSE	Cover Mean
0.794595	29.60719	1.258306	4.250000

Parameter		Standard				
		Estimate		Error	t Value	Pr > $\|t\|$
Intercept		4.000000000	B	0.88975652	4.50	0.0041
Block	B2	3.500000000	B	1.25830574	2.78	0.0319
Block	B1	0.000000000	B	.	.	.
Treat	Lf	0.000000000	B	1.25830574	0.00	1.0000
Treat	LfF	-2.500000000	B	1.25830574	-1.99	0.0941
Treat	L	0.000000000	B	.	.	.
Block*Treat	B2 Lf	-3.000000000	B	1.77951304	-1.69	0.1428
Block*Treat	B2 LfF	-1.000000000	B	1.77951304	-0.56	0.5945
Block*Treat	B2 L	0.000000000	B	.	.	.
Block*Treat	B1 Lf	0.000000000	B	.	.	.
Block*Treat	B1 LfF	0.000000000	B	.	.	.
Block*Treat	B1 L	0.000000000	B		-	

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed bv the letter 'B' are not

R code and output - main effects only

```
# Set the reference levels
case1301$Block = relevel(case1301$Block, ref='B1')
case1301$Treat = relevel(case1301$Treat, ref='L' )
summary(mM <- lm(Cover Block+Treat, case1301, subset=Block %in% c("B1","B2") & Treat %in% c("L","Lf","LfF")))
Call:
lm(formula = Cover ~ Block + Treat, data = case1301, subset = Block %in%
    c("B1", "B2") & Treat %in% c("L", "Lf", "LfF"))
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.333 & -0.667 & 0.000 & 0.792 & 1.833
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrl} 
(Intercept) & 4.667 & 0.768 & 6.07 & 0.0003 *** \\
BlockB2 & 2.167 & 0.768 & 2.82 & 0.0225 * \\
TreatLf & -1.500 & 0.941 & -1.59 & 0.1496 \\
TreatLfF & -3.000 & 0.941 & -3.19 & 0.0128 *
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.33 on 8 degrees of freedom
Multiple R-squared: 0.694, Adjusted R-squared: 0.579
F-statistic: 6.04 on 3 and 8 DF, p-value: 0.0188
```


R code and output - with an interaction

```
summary(mI <- lm(Cover~Block*Treat, case1301, subset=Block %in% c("B1","B2") & Treat %in% c("L","Lf","LfF")))
Call:
lm(formula = Cover ~ Block * Treat, data = case1301, subset = Block %in%
    c("B1", "B2") & Treat %in% c("L", "Lf", "LfF"))
Residuals:
    Min 1Q Median 3Q Max
-1.500 -0.625}00.000 0.625 1.500 
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & \(4.00 \mathrm{e}+00\) & \(8.90 \mathrm{e}-01\) & 4.50 & 0.0041
\end{tabular}\(* *\)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.26 on 6 degrees of freedom
Multiple R-squared: 0.795, Adjusted R-squared: 0.623
F-statistic: 4.64 on 5 and 6 DF, p-value: 0.0443
```


Visualizing the models

with interaction

When to include interaction terms

From The Statistical Sleuth (3rd ed) page 250:

- when a question of interest pertains to an interaction
- when good reason exists to suspect an interaction or
- when interactions are proposed as a more general model for the purpose of examining the goodness of fit of a model without interaction.

Multiple regression explanatory variables

The possibilities for explanatory variables are

- Higher order terms $\left(X^{2}\right)$
- Additional explanatory variables (X_{1} and X_{2})
- Dummy variables for categorical variables $\left(X_{1}=I()\right)$
- Interactions ($X_{1} X_{2}$)
- Continuous-continuous
- Continuous-categorical
- Categorical-categorical

We can also combine these explanatory variables, e.g.

- including higher order terms for continuous variables along with dummy variables for categorical variables and
- including higher order interactions $\left(X_{1} X_{2} X_{3}\right)$.

[^0]: NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable
 Jarad Niemi (lowa State)
 Multiple regression models
 November 7, 2014

