STAT 401A - Statistical Methods for Research Workers

Logistic and Poisson regression

Jarad Niemi (Dr. J)
Iowa State University
last updated: December 8, 2014

Linear regression

The linear regression model

$$
\begin{aligned}
& Y_{i} \stackrel{\text { ind }}{\sim} N\left(\mu_{i}, \sigma^{2}\right) \\
& \mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
\end{aligned}
$$

where

- Y_{i} is continuous
- X_{i} is continuous or categorical (indicator variables)

What if Y_{i} is a binary or a count? Use

- logistic regression or
- Poisson regression.

Binomial distribution

The probability mass function of the binomial distribution is

$$
P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y} \quad y=0,1,2, \ldots, n
$$

Properties:

- $E[Y]=n p$
- $V[Y]=n p(1-p)$

Probability mass function for $\operatorname{Bin}(10, .3)$

Poisson distribution

The probability mass function of the Poisson distribution is

$$
P(Y=y)=\frac{\mu^{y} e^{-\mu}}{y!} \quad \mu>0, y=0,1,2, \ldots
$$

Properties:

- $E[Y]=V[Y]=\mu$

Probability mass function for $\mathrm{Po}(3)$

Is Poisson or binomial more appropriate?

- Use Poisson when there is no technical upper limit to how high the count could be.
- Use binomial when you know a technical upper limit, this becomes n.

Examples

- Binomial
- Number of head coin flips out of 10 trials
- Whether or not somebody has lung cancer
- Number of species that went extinct since last census
- Poisson
- Number of cars through an intersection in 10 minutes
- Number of successful matings for African elephants
- Number of salamanders found in a $49 \mathrm{~m}^{2}$ area

Logistic regression

The model

$$
\begin{aligned}
& Y_{i} \stackrel{i n d}{\sim} \operatorname{Bin}\left(n_{i}, p_{i}\right) \\
& \operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
\end{aligned}
$$

where

- Y_{i} is an integer from 0 to n_{i}
- Bin refers to the binomial distribution
- Note: if $\operatorname{logit}(p)=\eta$ then $p=\frac{e^{\eta}}{1+e^{\eta}}$

Number of species that have gone extinct

	Island	Area	AtRisk	Extinct
1	Ulkokrunni	185.80	75	5
2	Maakrunni	105.80	67	3
3	Ristikari	30.70	66	10
4	Isonkivenletto	8.50	51	6
5	Hietakraasukka	4.80	28	3
6	Kraasukka	4.50	20	4
7	Lansiletto	4.30	43	8
8	Pihlajakari	3.60	31	3
9	Tyni	2.60	28	5
10	Tasasenletto	1.70	32	6
11	Raiska	1.20	30	8
12	Pohjanletto	0.70	20	2
13	Toro	0.70	31	9
14	Luusiletto	0.60	16	5
15	Vatunginletto	0.40	15	7
16	Vatunginnokka	0.30	33	8
17	Tiirakari	0.20	40	13
18	Ristikarenletto	0.07	6	3

Is there a relationship between the probability of extinction and island size?

Is there a relationship between the probability of extinction and island size?

Parameter estimation

Fit the model

$$
Y_{i} \stackrel{i n d}{\sim} \operatorname{Bin}\left(n_{i}, p_{i}\right) \quad \operatorname{logit}\left(p_{i}\right)=\beta_{0}+\beta_{1} X_{i}
$$

where

- Y_{i} is the number of extinctions on island i
- n_{i} is the total extinctions possible (the number at risk) on island i
- $X_{i, 1}$ is the logarithm of the area for island i
and

$$
\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)
$$

Logistic regression in R

```
Call:
glm(formula = cbind(Extinct, AtRisk - Extinct) ~ log(Area), family = "binomial",
    data = case2101)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-1.71726 & -0.67722 & 0.09726 & 0.48365 & 1.49545
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.19620 0.11845 -10.099 < 2e-16 ***
log(Area) -0.29710 0.05485 -5.416 6.08e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 45.338 on 17 degrees of freedom
Residual deviance: 12.062 on 16 degrees of freedom
AIC: 75.394
Number of Fisher Scoring iterations: 4
    2.5% 97.5 %
(Intercept) -1.4330322 -0.9680656
log(Area) -0.4077542 -0.1922731
```


Logistic regression parameter interpretation

- At an area size of $1[\log ($ area $)=0]$, the probability of extinction is estimated to be 23% with a 95% confidence interval of ($19 \%, 38 \%$).

$$
\frac{e^{-1.1962}}{1+e^{-1.1962}}=0.23 \quad \frac{e^{-1.4283}}{1+e^{-1.4283}}=0.19 \quad \frac{e^{-0.9640}}{1+e^{-0.9640}}=0.38
$$

- With all other variables held constant, a unit increase in $\log (a r e a)$ is associated with a $0.74\left[=e^{-0.2971}\right]$ multiplicative change in the odds, e.g. from $\log ($ area $)=0$ to $\log ($ area $)=1$

$$
\begin{aligned}
& 0.74 \text { odds }_{0}=\text { odds }_{1} \Longrightarrow 0.74 \frac{p_{0}}{1-p_{0}}=\frac{p_{1}}{1-p_{1}} \\
& 0.74 \frac{0.23}{1-0.23}=\frac{p_{1}}{1-p_{1}} \Longrightarrow 0.17=\frac{p_{1}}{1-p_{1}} \Longrightarrow p_{1}=0.15
\end{aligned}
$$

- Since we used the logarithm of area, each doubling of area is associated with a multiplicative change in the odds of $0.81\left[=2^{-0.2971}\right]$ and each 10 -fold increase in area is associated with a multiplicative change in the odds of $0.50\left[=10^{-0.2971}\right]$.

Logistic regression with multiple explanatory variables

```
Call:
glm(formula = LC ~ FM + SS + BK + AG + YR + CD, family = "binomial",
    data = case2002)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.2460 & -0.9808 & 0.4605 & 0.8333 & 1.5642
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr}(>|z|
(Intercept) -0.09196 1.75465 -0.052 0.958204
FMMale 
SSLow 0.10545 0.46885 0.225 0.822050
BKNoBird 1.36259 0.41128 3.313 0.000923 ***
```



```
YR -0.07287 0.02649 -2.751 0.005940 **
CD -0.02602 0.02552 -1.019 0.308055
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 187.14 on 146 degrees of freedom
Residual deviance: 154.20 on 140 degrees of freedom
AIC: 168.2
Number of Fisher Scoring iterations: 5
```


Poisson regression

$$
\begin{aligned}
Y_{i} & \stackrel{i n d}{\sim} P_{o}\left(\mu_{i}\right) \\
\log \left(\mu_{i}\right) & =\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
\end{aligned}
$$

where

- Y_{i} is a non-negative integer
- Po refers to the Poisson distribution

African elephant mating

head (case2201, 10)		
Age		
Matings		
1	27	0
2	28	1
3	28	1
4	28	1
5	28	3
6	29	0
7	29	0
8	29	0
9	29	2
10	29	2

Is there a relationship between Matings and Age?

Is there a relationship between Matings and Age?

Poisson regression

```
m = glm(Matings ~Age, data=case2201, family="poisson")
summary (m)
Call:
glm(formula = Matings ~ Age, family = "poisson", data = case2201)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.80798 & -0.86137 & -0.08629 & 0.60087 & 2.17777
\end{tabular}
Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.58201 0.54462 -2.905 0.00368 **
Age 0.06869 0.01375 4.997 5.81e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 75.372 on 40 degrees of freedom
Residual deviance: 51.012 on 39 degrees of freedom
AIC: 156.46
Number of Fisher Scoring iterations: 5
```


Shifting the intercept

```
mAge = median(case2201$Age)
m = glm(Matings~I(Age-mAge), data=case2201, family="poisson")
summary(m)
Call:
glm(formula = Matings ~ I(Age - mAge), family = "poisson", data = case2201)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.80798 & -0.86137 & -0.08629 & 0.60087 & 2.17777
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) \(0.75355 \quad 0.11761 \quad 6.4071 .48 \mathrm{e}-10 * * *\)
I(Age - mAge) 0.06869 0.01375 4.997 5.81e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 75.372 on 40 degrees of freedom
Residual deviance: 51.012 on 39 degrees of freedom
AIC: 156.46
Number of Fisher Scoring iterations: 5
```


Shifting the intercept

```
confint(m)
    2.5% 97.5 %
(Intercept) 0.51288577 0.97468553
I(Age - mAge) 0.04167776 0.09563762
```


Poisson regression parameter interpretation

- At the median age of 34 , the expected number of matings is 2.1 $\left[=e^{0.7535}\right]$ with a 95% confidence interval of $(1.7,2.7)$.
- With all other variables held constant, for each year increase in age there is a multiplicative effect on the expected number of matings of $1.07\left[=e^{0.0687}\right]$ with a 95% confidence interval of $(1.04,1.10)$, e.g.

$$
\begin{array}{rlll}
\mu(\text { age }=35) & =\mu(\text { age }=34) \cdot 1.07 & =2.1 \cdot 1.07 & =2.28 \\
\mu(\text { age }=44) & =\mu(\text { age }=34) \cdot 1.07^{10} & =2.1 \cdot 1.07^{10} & =4.2
\end{array}
$$

Drop-in-deviance test

To test whether a set of explanatory variables should be in the model, a drop-in-deviance test should be used. This is analogous to the extra-sums-of-squares F-test for normally distributed data.

The deviance is $-2 \log L\left(\hat{\theta}_{M L E}\right)$. The drop-in-deviance test statistic is

$$
\text { Deviance }_{\text {reduced }} \text { - Deviance full }
$$

which, if the null hypothesis is true, has a χ_{v}^{2} where v is the difference in the number of parameters between the full and reduced models.

Drop-in deviance test for age squared

Fit the model with only age (reduced model):

Criterion	DF	Value	Value/DF
Deviance	39	51.0116	1.3080

Fit the model with age and age squared (full model):

Criterion	DF	Value	Value/DF
Deviance	38	50.8262	1.3375

Drop-in-deviance test:

$$
\operatorname{Dev}_{\text {red }}-\operatorname{Dev}_{\text {full }}=51.0116-50.8262=0.1854
$$

compare this to a χ_{1}^{2}, i.e.

$$
P\left(\chi_{1}^{2}>0.1854\right)=0.67
$$

Drop-in-deviance test

```
anova(glm(Matings ~Age, data=case2201, family="poisson"),
    glm(Matings~Age + I(Age^2), data=case2201, family="poisson"),
    test="Chi")
Analysis of Deviance Table
Model 1: Matings ~ Age
Model 2: Matings ~ Age + I(Age^2)
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 39 51.012
\begin{tabular}{llllll}
2 & 38 & 50.826 & 1 & 0.18544 & 0.6667
\end{tabular}
```


Poisson regression with multiple explanatory variables

```
summary(m <- glm(Salamanders~PctCover+ForestAge, data=case2202, family="poisson"))
Call:
glm(formula = Salamanders ~ PctCover + ForestAge, family = "poisson",
    data = case2202)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.9484 & -1.3649 & -0.7072 & 0.6243 & 3.8417
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.483e+00 4.573e-01 -3.244 0.00118 **
PctCover 3.249e-02 5.735e-03 5.666 1.46e-08 ***
ForestAge -2.111e-05 4.981e-04 -0.042 0.96620
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 190.22 on 46 degrees of freedom
Residual deviance: 121.30 on 44 degrees of freedom
AIC: 212.36
Number of Fisher Scoring iterations: 5
```


Drop-in-deviance tests

```
# Perform all the drop-in-deviance tests
drop1(m, test="Chi")
Single term deletions
Model:
Salamanders ~ PctCover + ForestAge
    Df Deviance AIC LRT Pr(>Chi)
<none> 121.30 212.36
PctCover 1 170.65 259.70 49.342 2.15e-12 ***
ForestAge 1}10121.31 210.36 0.002 0.9662
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

