Instructions:

- Write your name on the top, but do not open the exam.
- You are allowed to use any resource except aid from another individual.
- A total of 4 pages with a front and back.
- For full/partial credit, show all your work.

1. The United States has identified a previously unknown piece of space debris and is trying to determine the probability it is from a US space craft.
Answer:
```
prevalence <- c("Russia"=4/10, "US"=3/10, "China"=2/10, "Other"=1/10)
probability <- c("Russia"=1/100, "US"=1/10, "China"=5/100, "Other"=2/100)
```

For identified space debris, we have the following proportions by country

\#\# Russia	US	China	Other	
\#\#	0.4	0.3	0.2	0.1

The space debris is giving off a signature in the infrared spectrum. The following table provides the proportion of existing space debris for each country that has this particular signature, i.e. the conditional probability given the country:

\#\# Russia	US	China	Other	
\#\#	0.01	0.10	0.05	0.02

Given that the space debris is giving off this signature, determine the probability that the debris belongs to Russia, US, China, and Other. (10 points)
Answer: This is a Bayes Rule question, but instead of just calculating one probability we must calculate all the probabilities. Assume the following notation:

- R is the event the debris is from Russia
- U is the event the debris is from US
- C is the event the debris is from China
- O is the event the debris is from Other
- S is the event the debris is giving off the signature

We have the marginal probability the debris is from each country, e.g. $P(R)$, as

```
prevalence
\begin{tabular}{lrrrr} 
\#\# Russia & US & China & Other \\
\#\# & 0.4 & 0.3 & 0.2 & 0.1
\end{tabular}
```

and the conditional probability the debris is giving off the signature given the country of origin, e.g. $P(S \mid R)$, is

```
probability
```

\#\# Russia	US	China	Other	
\#\#	0.01	0.10	0.05	0.02

Now for a particular country we use Bayes Rule to calculate

$$
P(R \mid S)=\frac{P(S \mid R) P(R)}{P(S \mid R) P(R)+P(S \mid U) P(U)+P(S \mid C) P(C)+P(S \mid O) P(O)}
$$

Note that the denominator will be the same for every calculation. The purpose the denominator serves is to ensure that the following probabilities sum to 1 :

$$
P(R \mid S)+P(U \mid S)+P(C \mid S)+P(O \mid S)=1
$$

The final conditional probabilities can be computed in R via

```
probability*prevalence/sum(probability*prevalence)
## Russia US China Other
## 0.08695652 0.65217391 0.21739130 0.04347826
```

2. For the following variables, identify the most appropriate distribution to model the variable from this list: binomial, Poisson, uniform, and normal. (1 point each)
(a) strength of \#3 carbon steel rebar

Answer: normal
(b) weight of dust in my office

Answer: normal
(c) number of occupied chairs in Gilman 2272 during this exam (there are a total of 70 chairs)
Answer: binomial
(d) number of car accidents in Story County in August 2021

Answer: Poisson
(e) number of visitors to a website who click on an advertisement out of the next one thousand visitors
Answer: binomial
(f) elasticity of a polymer network

Answer: normal
(g) time it will take to read The Black Swan

Answer: normal
(h) number of student organizations at Iowa State University

Answer: Poisson
(i) number of books on my office bookshelf, out of the 74 books on my bookshelf, with the word "Statistics" in the title

Answer: binomial
(j) thickness of my office window

Answer: normal
3. As a road is constructed, there is an average of 1.5 defects per mile segment of the road. Let Y_{i} be the number of defects on segment i. Assume $Y_{i} \sim P o(1.5)$ and that the number of defects in each segment is independent.

Answer:

```
rate <- 1.5
```

(a) The following questions are about the first road segment.

- What is the expected number of defects in the first segment? (2 points) Answer:

```
rate
## [1] 1.5
```

- What is the standard deviation of the number of defects in the first segment? (2 points)
Answer:

```
sqrt(rate)
## [1] 1.224745
```

- Calculate the probability of no defects in the first segment. (3 points) Answer: $P\left(Y_{1}=0\right)$ is

```
dpois(0, lambda = rate)
## [1] 0.2231302
```

- Calculate the probability of two or more defects in the second segment. (3 points) Answer: $P\left(Y_{2} \geq 2\right)=1-P\left(Y_{2}<2\right)=1-P\left(Y_{2} \leq 1\right)$ is

```
1 - ppois(1, lambda = rate)
## [1] 0.4421746
```

(b) The following questions are about a 10 mile stretch of road. Assume the number of defects in each mile stretch is independent. (3 points each)

- What is the expected number of total defects in a 10 mile stretch of the road? (2 points)
Answer: Let S be the number of defects in a 10 mile stretch. Then $S=\sum_{i=1}^{10} Y_{i} \sim$ Po(10 * 1.5).

```
n <- 10
rate10 <- n*rate
rate10
## [1] 15
```

- What is the standard deviation in the number of total defects in a 10 mile stretch of the road? (2 points) Answer:

```
sqrt(rate10)
```

\#\# [1] 3.872983

- What is the probability of exactly 14 defects in a 10 mile stretch of the road? (3 points)
Answer: $P(S=14)$ is

```
dpois(14, lambda = rate10)
## [1] 0.1024359
```

- What is the probability of 12 or fewer defects in a 10 mile stretch of the road? (3 points)
Answer: $P(S \leq 12)$ is
ppois(12, lambda = rate10)
\#\# [1] 0.267611

4. Assume the compressive strength of residential concrete follows a normal distribution with a mean of 17 MPa and a standard deviation of 2 MPa . (2 points each)
Answer:
$\mathrm{m}=17$
s $=2$
(a) What is the expected compressive strength?

Answer:
m
\#\# [1] 17
(b) What is the variance on the compressive strength?

Answer:
$s^{\wedge} 2$
\#\# [1] 4
(c) The coefficent of variation (cv) is the standard deviation divided by the mean. What is the coefficient of variation for compressive strength of residential concrete?
Answer:
s/m
\#\# [1] 0.1176471
Note that this quantity is unitless.
(d) What is the probability the compressive stength of a particular sample of residential concrete is below 15 MPa ?
Answer:
pnorm(15, mean $=m, s d=s)$
\#\# [1] 0.1586553
(e) Provide an interval such that 95% of all residential concrete samples will have compressive strength within that interval.
Answer:

$$
\begin{aligned}
& m+c(-1,1) * 2 * s \\
& \# \#[1] 1321
\end{aligned}
$$

A company has indicated that they can double the compressive strength plus 5 Mpa by adding a proprietary ingredient. Specifically, if Y is the normal compressive strength, the company can make it $2 Y+5$.
(f) What is the expected compressive stength of the concrete with this ingredient? (3 points)
Answer:

```
(m_new <- 2*m+5)
## [1] 39
```

(g) What is the variance in compressive strength of the concrete with this ingredient? (3 points)
Answer:

```
(s2_new <- 2^2*s^2)
## [1] 16
```

(h) What is the probability the new strength will be greater than 40? (4 points) Answer:
$1-\operatorname{pnorm}(40$, mean $=$ m_new, $s d=$ sqrt(s2_new))
\#\# [1] 0.4012937
5. An extruding machine has a screw that propels plastic through a barrel to be extruded. Each turn of the screw pushes, on average, a 5 millimeter (mm) length of plastic with a standard deviation of 0.3 mm .
Answer:

```
m = 5
s = 0.3
```

(a) After 70 turns of the screw, what is the expected length of the extruded plastic? (2 points)
Answer:

```
n <- 70
(m70 <- n*m) ## mm
## [1] 350
```

(b) After 70 turns of the screw, what is the standard deviation of the length of the extruded plastic? (2 points)
Answer:
(s70 <- sqrt(n*s^2)) \# mm
\#\# [1] 2.50998
(c) What is the probability the extruded plastic after 70 turns is less than 355 mm in length? (3 points)
Answer:
pnorm(355, mean $=\mathrm{m} 70, \mathrm{~s}=\mathrm{s} 70$)
\#\# [1] 0.9768171
(d) The machine must be adjusted to ensure that after 70 turns the probability the extruded plastic is less than 355 mm is, at most, 0.99 . What is the maximum standard deviation for a single turn required to ensure this probability? (3 points)
Answer: Let $X \sim N\left(70 \times 5,70 \times \sigma^{2}\right)$ and our goal is to find σ such that $P(X<$ $355) \geq 0.99$. The z -statistic that corresponds to 0.99 is
($z=\operatorname{qnorm}(0.99)$)
\#\# [1] 2.326348

$$
\begin{aligned}
0.99 & =P(X<355) \\
& =P\left(\frac{X-70 * 5}{\sqrt{70 \sigma^{2}}}<\frac{355-70 * 5}{\sqrt{70 \sigma^{2}}}\right) \\
& =P\left(Z<\frac{(355-350) / \sqrt{70}}{\sigma}\right)
\end{aligned}
$$

(355-350)/sqrt(70) / z
\#\# [1] 0.2568895
Thus if σ is this value or smaller, we are guaranteed that the probability of being less than 355 mm is at least 0.99 .

