I05a - Sampling distribution

STAT 587 (Engineering)
Iowa State University

March 30, 2021

Sampling distribution

The sampling distribution of a statistic is the distribution of the statistic over different realizations of the data.

Find the following sampling distributions:

- If $Y_{i} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$,

$$
\bar{Y} \quad \text { and } \quad \frac{\bar{Y}-\mu}{S / \sqrt{n}}
$$

- If $Y \sim \operatorname{Bin}(n, p)$,

$$
\frac{Y}{n}
$$

Normal model

Let $Y_{i} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$, then $\bar{Y} \sim N\left(\mu, \sigma^{2} / n\right)$.

Sampling distribution for $\mathrm{N}(35,25)$ average

Normal model

Let $Y_{i} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$, then the t-statistic

$$
T=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim t_{n-1} .
$$

Sampling distribution of the t-statistic

Binomial model

Let $Y \sim \operatorname{Bin}(n, p)$, then

$$
P\left(\frac{Y}{n}=p\right)=P(Y=n p), \quad p=0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1 .
$$

Sampling distribution for binomial proportion

Approximate sampling distributions

Recall that from the Central Limit Theorem (CLT):

$$
S=\sum_{i=1}^{n} X_{i} \dot{\sim} N\left(n \mu, n \sigma^{2}\right) \quad \text { and } \quad \bar{X}=S / n \dot{\sim} N\left(\mu, \sigma^{2} / n\right)
$$

for independent X_{i} with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$.

Approximate sampling distribution for binomial proportion

 If $Y=\sum_{i=1}^{n} X_{i}$ with $X_{i} \stackrel{i n d}{\sim} \operatorname{Ber}(p)$, then$$
\frac{Y}{n} \dot{\sim} N\left(p, \frac{p[1-p]}{n}\right) .
$$

Approximate sampling distributions for binomial proportion

Summary

Sampling distributions:

- If $Y_{i} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$,
- $\bar{Y} \sim N\left(\mu, \sigma^{2} / n\right)$ and
- $\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim t_{n-1}$.
- If $Y \sim \operatorname{Bin}(n, p)$,
- $P\left(\frac{Y}{n}=p\right)=P(Y=n p)$ and
- $\frac{Y}{n} \dot{\sim} N\left(p, \frac{p[1-p]}{n}\right)$.
- If X_{i} independent with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$, then

$$
S=\sum_{i=1}^{n} X_{i} \dot{\sim} N\left(n \mu, n \sigma^{2}\right)
$$

and

