I06c - *t*-tests

STAT 587 (Engineering) Iowa State University

March 30, 2021

Statistical hypothesis testing

A hypothesis test consists of two hypotheses:

- null hypothesis (H_0) and
- an alternative hypothesis (H_A)

which make a claim about parameters in a model and a decision to either

- reject the null hypothesis or
- fail to reject the null hypothesis.

t-tests

If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then typical hypotheses about the mean are

 $H_0: \mu = \mu_0$ versus $H_A: \mu \neq \mu_0$

or

$$H_0: \mu = \mu_0$$
 versus $H_A: \mu > \mu_0$

or

 $H_0: \mu = \mu_0$ versus $H_A: \mu < \mu_0$

t-statistic

Then

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}}$$

has a t_{n-1} distribution when H_0 is true.

The as or more extreme region is determined by the alternative hypothesis.

$$H_A: \mu < \mu_0 \implies T \le t$$

or

$$H_A: \mu > \mu_0 \implies T \ge t$$

or

$$H_A: \mu \neq \mu_0 \implies |T| \ge |t|$$

where $T \sim t_{n-1}$.

Example data

Suppose we assume $Y_i \stackrel{ind}{\sim} N(\mu,\sigma^2)$ with $H_0: \mu=3$ and we observe

 $n = 6, \, \overline{y} = 6.3, \, \text{and} \, s = 4.1.$

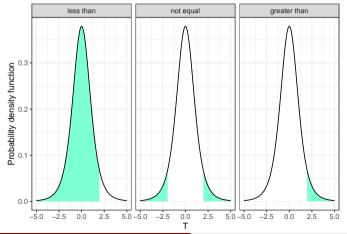
Then we can calculate

t = 1.97

which has a t_5 distribution if the null hypothesis is true.

as or more extreme regions

As or more extreme regions for t = 1.97 with 5 degrees of freedom



R Calculation

$$H_A: \mu < 3$$

t.test(y, mu = mu0, alternative = "less")\$p.value

[1] 0.9461974

 $H_A: \mu > 3$

t.test(y, mu = mu0, alternative = "greater")\$p.value

[1] 0.05380256

 $H_A:\mu
eq 3$

t.test(y, mu = mu0, alternative = "two.sided")\$p.value

[1] 0.1076051

Interpretation

The null hypothesis is a model. For example,

$$H_0: Y_i \stackrel{ind}{\sim} N(\mu_0, \sigma^2)$$

if we reject H_0 , then we are saying the data are incompatible with this model. So, possibly

- the Y_i are not independent or
- ${\, \bullet \,}$ they don't have a common σ^2 or
- they aren't normally distributed or
- $\mu
 eq \mu_0$ or
- you got unlucky.

If you fail to reject H_0 , then there is insufficient evidence to say that the data are incompatible with the null model.

Quality control example

An I-beam manufacturing facility has a design specification for I-beam thickness of 12 millimeters. During manufacturing a random sample of I-beams are taken from the line and their thickness is measured.

```
y
[1] 12.04 11.98 11.97 12.12 11.90 12.05 12.14 12.13 12.18 12.23 12.03 12.03
```

```
t.test(y, mu = 12)
```

```
One Sample t-test
```

```
data: y
t = 2.4213, df = 11, p-value = 0.03393
alternative hypothesis: true mean is not equal to 12
95 percent confidence interval:
12.00607 12.12727
sample estimates:
mean of x
12.06667
```

The small *p*-value suggests the data may be incompatible

(STAT587@ISU)

Summary

• t-test, $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$:

 $H_0: \mu = \mu_0$ versus $H_A: \mu \neq \mu_0$

- $\bullet~$ Use $p\mbox{-values}$ to determine whether to
 - reject the null hypothesis or
 - fail to reject the null hypothesis.
- More assessment is required to determine if other model assumptions hold.