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Descriptive statistics

Statistics

The field of statistics is the study of the collection, analysis, interpretation, presentation, and
organization of data.

https://en.wikipedia.org/wiki/Statistics

There are two different phases of statistics:
@ descriptive statistics
e statistics
e graphical statistics
@ inferential statistics

@ uses a sample to make statements about a population.
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https://en.wikipedia.org/wiki/Statistics

Descriptive statistics Population and sample

Convenience sample

The population consists of all units of interest. Any numerical characteristic of a population is
a parameter. The sample consists of observed units collected from the population. Any
function of a sample is called a statistic.

Population: in-use routers by graduate students at lowa
State University.

Parameter: proportion of those routers that have
Gigabit speed.

Sample: students in STAT 587-2

Statistics: proportion of those students that have
Gigabit routers.
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Random samle
Simple random sampling

A simple random sample is a sample from the population where all subsets of the same size are
equally likely to be sampled. Random samples ensure that statistical conclusions will be valid.

Population: in-use routers by graduate students at lowa
State University.

Parameter: proportion of those routers that have
Gigabit speed.

Sample: a pseudo-random number generator gives each
graduate student a Unif(0,1) number and the lowest
100 are contacted

Statistics: proportion that have Gigabit routers.
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Descriptive statistics Random sample

Sampling and non-sampling errors

Sampling errors are caused by the mere fact that only a sample, a portion of a population, is
observed. Fortunately,
error | as sample size (n) 1

Non-sampling errors are caused by inappropriate sampling schemes and wrong statistical
techniques. Often, no statistical technique can rescue a poorly collected sample of data.

Sample: students in STAT 587-2
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Descriptive statistics [SER IS

Statistics and estimators

A statistic is any function of the data.

Descriptive statistics:
@ Sample mean, median, mode
@ Sample quantiles

@ Sample variance, standard deviation

When a statistic is meant to estimate a corresponding
population parameter, we call that statistic an estimator.
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Descriptive statistics [SElTEHREEN]

Sample mean

Let X1,...,X,, be a random sample from a distribution with
EXi|=p and Var(X;] = o?
where we assume independence between the X;.

The sample mean is

0h

3\'—‘

and estimates the population mean .
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IS EYE Al  Sample variance

Sample variance

Let X1,...,X,, be a random sample from a distribution with
EXi|=p and Var(X;] = o?
where we assume independence between the X;.

The sample variance is

2

- — > X2 —nX
A2 2 , 2 =1

6°=S5 = El()(z X)? = &4 i

1=

n—1

and estimates the population variance o2.

The sample standard deviation is & = v/ 62 and
estimates the population standard deviation.
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Descriptive statistics Quantiles

Quantiles

A p-quantile of a population is a number x that solves
PX<z)<p and PX>z)<1l-p.

A sample p-quantile is any number that exceeds at most 100p% of the sample, and is exceeded by at
most 100(1 — p)% of the sample. A 100p-percentile is a p-quantile. First, second, and third quartiles
are the 25th, 50th, and 75th percentiles. They split a population or a sample into four equal parts. A
median is a 0.5-quantile, 50th percentile, and 2nd quartile.

The interquartile range is the third quartile minus the first
quartile, i.e.

IQR=Q3— 1

and the sample interquartile range is the third sample
quartile minus the first sample quartile, i.e.

—_— A A
IQR = Qs — Q1
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Quantiles

Descriptive statistics

Standard normal quartiles

Standard normal
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Descriptive statistics Quantiles

Sample quartiles from a standard normal

Standard normal samples
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Descriptive statistics Properties of statistics and estimators

Properties of statistics and estimators

Statistics can have properties, e.g.

@ standard error

Estimators can have properties, e.g.
@ unbiased

@ consistent
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Descriptive statistics Standard error

Standard error

The standard error of a statistic 6 is the standard deviation of that statistic (when the data are
considered random).

If X; are independent and have Var[X;] = o2, then

Var [Y] = Var [% Sy X,}

2
- % Y VarlX] =53 00 =%

n n

and thus

SD[X]|=/Var [ X] =0/Vn.

Thus the standard error of the sample mean is o/+/n.
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Unbiased
Unbiased

An estimator 0 is unbiased for a parameter 6 if its expectation (when the data are considered
random) equals the parameter, i.e.

E[6] = 6.
The sample mean is unbiased for the population mean g since

1 < 1 <
nzxi] LS Ex -
=1 =1

and the sample variance is unbiased for the population

variance o2.

E[X]|=FE
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Descriptive statistics Consistent

Consistent

An estimator 0, or én(:v) is consistent for a parameter 6 if the probability of its sampling error
of any magnitude converges to 0 as the sample size n increases to infinity, i.e.

P(A

Qn(X)—9‘>e>—>Oasn—>oo

for any ¢ > 0.

The sample mean is consistent for u since
Var [X ]| = o0?/n and

_ Var [X]  o?/n
P(|X—p|>¢) < 2 T e —0

where the inequality is from Chebyshev's inequality.
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https://en.wikipedia.org/wiki/Chebyshev's_inequality

Binomial example
Suppose Y ~ Bin(n, ) where 0 is the probability of success. The statistic 6 = Y/n is an
estimator of 6.

Since

the estimator is unbiased.
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Binomial example

Suppose Y ~ Bin(n, ) where 0 is the probability of success. The statistic 6 = Y/n is an
estimator of 6.

The variance of the estimator is

Var [é} =Var [Y] = iVar[Y] = %n@(l —0) = M

n n2 n n

Thus the standard error is

SE(G) = \/Varld] = \/9(1;9)'

By Chebychev's inequality, this estimator is consistent
for 6.
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Descriptive statistics [SIIUINEIG

Summary

Statistics are functions of data.
Statistics have some properties:
e Standard error

Estimators are statistics that estimate population parameters.

Estimators may have properties:

e Unbiased
o Consistent
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Look at it!

Before you do anything with a data set,
LOOK AT IT!
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Why should you look at your data?

1. Find errors
e Do variables have the correct range, e.g. positive?
e How are Not Available encoded?
o Are there outliers?
2. Do known or suspected relationships exist?
o Is X linearly associated with Y?
e Is X quadratically associated with Y?
3. Are there new relationships?
o What is associated with Y and how?
4. Do variables adhere to distributional assumptions?

e Does Y have an approximately normal distribution?
o Right/left skew
o Heavy tails
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Graphical statistics

Principles of professional statistical graphics

https://moz.com/blog/data-visualization-principles-1lessons-from-tufte

@ Show the data

e Avoid distorting the data, e.g. pie charts, 3d pie charts, exploding wedge 3d pie charts, bar
charts that do not start at zero

@ Plots should be self-explanatory

e Use informative caption, legend
e Use normative colors, shapes, etc

@ Have a high information to ink ratio
e Avoid bar charts
@ Encourage eyes to compare
o Use size, shape, and color to highlight differences
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Stock market return

http://www.nytimes.com/interactive/2011/01/02/business/20110102-metrics-graphic.html?_r=0
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Modeling

Statistical modeling

A statistical model is a pair (S, P) where S is the set of possible observations, i.e. the sample
space, and P is a set of probability distributions on S.

Typically, assume a parametric model

p(yl0)
where

@ y is our data and
@ 0 is unknown parameter vector.
The
@ allowable values for 6 determine P and

o the support of p(y|#) is the set S.
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Modeling Binomial

Binomial model

Suppose we will collect data were we have
@ the number of success y
@ out of some number of attempts n
@ where each attempt is independent
@ with a common probability of success 6.

Then a reasonable statistical model is

Y ~ Bin(n,0).

Formally,
e $={0,1,2,...,n} and

o P={Bin(n,0):0<6 <1}
102 - Likelihood October 4, 2021 3/20



Modeling Normal

Normal model

Suppose we have one datum
@ real number,
@ has a mean ;. and variance o2, and
@ uncertainty is represented by a bell-shaped curve.

Then a reasonable statistical model is

Y ~ N(Mao—z)'

Marginally,
o S={y:yeR}

@ P={N(u,0?) :—00<pu<o0,0<0c?< o0} where

— 2
0= (p,07).
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Modeling Normal

Normal model

Suppose our data are
@ n real numbers,
@ each has a mean y and variance is o2,
@ a histogram is reasonably approximated by a bell-shaped curve, and
@ each observation is independent of the others.
Then a reasonable statistical model is
ind

Y; ‘= N(p,0%).

Marginally,

e S={(y1,---,un) s €R,i € {1,2,...,n}}
@ P={N,(u,o?l): —00 < p<00,0<0?< oo} where
0 = (1,0%).
102 - Likelihood October 4, 2021 5/20



Likelihood

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data
when viewed as a function of the parameter (vector) . Generically, let p(y|@) be the joint probability
mass/density function of the data and thus the likelihood is

L(6) = p(y|0)

but where y is fixed and known, i.e. it is your data.

The log-likelihood is the (natural) logarithm of the
likelihood, i.e.
£(0) = log L(6).

Intuition: The likelihood describes the relative support in the
data for different values for your parameter, i.e. the larger
the likelihood is the more consistent that parameter value is
with the data.
102 - Likelihood October 4, 2021 6/20



Likelihood Binomial

Binomial likelihood

Suppose Y ~ Bin(n, ), then

n -
ptole) = (7)o o,
where 6 is considered fixed (but often unknown) and the argument to this function is y.
Thus the likelihood is

L(§) = (

n

y> 6Y(1 — )"

where y is considered fixed and known and the
argument to this function is 6.

Note: | write L(6) without any conditioning, e.g. on y,
so that you don’t confuse this with a probability mass

(STAT587@ISU)
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Likelihood Binomial

Binomial likelihood

Binomial likelihoods (n=10)
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Likelihood Independent observations

Likelihood for independent observations

Suppose Y; are independent with marginal probability mass/density function p(y;|0).
The joint distribution for y = (y1,...,yn) is

pl0) = [ p(vil6).
i=1
The likelihood for 0 is

n

L(0) = p(yl6) = [ [ p(v:16)

i=1

where we are thinking about this as a function of 4 for
fixed y.

(STAT587@ISU) 102 - Likelihood October 4, 2021 9/20



Normal
Normal model

Suppose Y; ™ N (4, o?), then

e~ 20 — (yi— N)2

p(yilu, 0%) =
2o

and

p(ylp, o?) :H?lp(yz‘\u, %)
— L5 (yi—p)?

=11 WW@ -

2
- (27W12)n/2€ 202 >ig (Wi—p)

where 1 and o2 are fixed (but often unknown) and the
argument to this function is y = (y1,...,Yn).
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Normal
Normal likelihood

If Y; " N(, 02), then

1

Y e i iew)?
(27‘(’0’2)”/2 e 2

p(ylu, o?) =

The likelihood is

1 1Nt 2
L(M7U) = p(y’u7 0-2) — We 202 Z'L:l(yl ,u')

where 7 is fixed and known and p and o2 are the
arguments to this function.
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Likelihood Normal

Normal likelihood - example contour plot

Example normal likelihood
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Maximum likelihood estimator

Maximum likelihood estimator (MLE)

Definition

The maximum likelihood estimator (MLE), éMLE is the parameter value 6 that maximizes the
likelihood function, i.e.

OrinE = argmaxy L(6).

When the data are discrete, the MLE maximizes the probability of the observed data.
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Derivation
Binomial MLE - derivation

If Y ~ Bin(n,0), then

L(0) = <”> 6Y(1 — 0)"v.

Yy
To find the MLE,
1. Take the derivative of £(6) with respect to 6.
2. Set it equal to zero and solve for 6.
00) =log (Z) + ylog(d) + (n — y) log(1l — )
d n—y set
@5(9) =§— 1% -
Ovre =y/n
Take the second derivative of £(6) with respect to 6
and check to make sure it is negative.
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St
Binomial MLE - graphically
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Numerical maximization
Binomial MLE - Numerical maximization

log_likelihood <- function(theta) {
dbinom(3, size = 10, prob = theta, log = TRUE)

}

o <- optim(0.5, log_likelihood,
method="'L-BFGS-B',
lower = 0.001, upper = .999,

control = list(fnscale = -1))
o$convergence
[11 o
o$par

[1] 0.3000006
o$value

[1] -1.321151
(©
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Derivation
Normal MLE - derivation

If Y; %' N(u,02), then

1 n e — 1) 2
Iy Zizl(yq, ")

2 — 1
L(p,0%) = Gmo2yn/Ze
1 e T (uewtTem?
(2mo2)n/2
= (@ro?) " 2 exp (— 5ty Ty [(wi 9 + 2w — DT - w) + @ — w)?])
= (2r0?) " 2 exp (— 5ty LIy (v — W2+ — 50 (T - w)?)  since i (v —§) =0
fpo?) = —%log(2no®) — Ty S (vi — W) ~ han@ - w)?
— set ~ —
;%Z(H,UQ) =5H5@-w 20 = amLE=7
a 2 _ 1 3 )2 set
55z Hu, 0%) **ﬁJFmZ?:ﬂyi*y) =0

2 _ 1 2 _ n—1g2
= ONLE = 35 ie1 (Wi — P = =S

Thus, the MLE for a normal model is

N — 1 _
KMLE =Y, UJQWLE = - Z(yz -7)°
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Normal MLE Numerical maximization

Normal MLE - numerical maximization

[1] -0.8969145 0.1848492 1.5878453

log_likelihood <- function(theta) {
sum(dnorm(x, mean = theta[l], sd = exp(theta[2]), log = TRUE))
}

o <- optim(c(0,0), log_likelihood,
control = list(fnscale = -1))

c(o$par[1], exp(o$par([2])~2)

[1] 0.2918674 1.0344601

n <- length(x); c(mean(x), (n-1)/n*var(x))

[1] 0.2919267 1.0347381
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Normal MLE Graph

Normal likelihood - graph
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Summary

e For independent observations, the joint probability mass (density) function is the product
of the marginal probability mass (density) functions.

@ The likelihood is the joint probability mass (density) function when the argument of the
function is the parameter (vector).

@ The maximum likelihood estimator (MLE) is the value of the parameter (vector) that
maximizes the likelihood.
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]
Outline

@ Bayesian parameter estimation

o Condition on what is known

o Describe belief using probability
e Terminology

@ Prior — posterior
@ Posterior expectation
o Credible intervals

e Binomial example
@ Beta distribution

¢ T587@ISU) 103 - Bayesian parameter estimation October 4, 2021 2/16



A Bayesian statistician

Let
@ y be the data we will collect from an experiment,
e K be everything we know for certain about the world (aside from y), and
@ 0 be anything we don't know for certain.

My definition of a Bayesian statistician is an individual
who makes decisions based on the probability
distribution of those things we don’t know conditional
on what we know, i.e.

p(Oly, K).
Typically, the K is dropped from the notation.
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Bayes' Rule

Bayes' Rule applied to a partition P = {41, A, ...},

B|A;)P(A;) P(B|A;)P(A;)

P B
PAIAB) = ="pBy = %, P(BIA) P(4)

Bayes' Rule also applies to probability density (or mass)
functions, e.g.

_plyld)p(0)  p(yl0)p(0)
PO =y T Talulo)n(6)de

where the integral plays the role of the sum in the
previous statement.
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Bayesian statistics Parameter estimation

Parameter estimation

Let y be data from some model with unknown parameter (vector) 6. Then

p(yl®)p(d)  p(ylo)p(9)

PO = T = Tolyl0)p(0)do

and we use the following terminology

Terminology Notation
Posterior p(0)y)
Prior p(0)
Model (likelihood) p(y|0)
Prior predictive p(y)

(marginal likelihood)

Bayesian parameter estimation involves updating your
prior belief about 6, p(#), into a posterior belief about
0, p(f|y), based on the data observed.
103 - Bayesian parameter estimation October 4, 2021 5/16



RIS
Bayesian notation

We now have two distributions for our parameter 6: prior and posterior. To distinguish these

two, we will have no conditioning in the prior and we will condition on y in the posterior.
For example,

Prior Posterior
Density p(6) p(0ly)
Expectation  El[f] E[0]y]

Variance Var(d] Var(0|y]
Probabilities P(6 <¢) P(6 < cly)
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Bayesian statistics Parameter estimation

Binomial model
Suppose Y ~ Bin(n, ), then
n _
ptole) = (7)o o,
Y
A reasonable default prior is the uniform distribution on the interval (0, 1)

p(0) =1(0< 0 <1).

Using Bayes Rule, you can find

Oly ~ Be(1+y,1+n—y).

(STAT587@ISU) 103 - Bayesian parameter estimation
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Bayesian statistics Parameter estimation

Beta distribution

The beta distribution defines a distribution for a probability, i.e. a number on the interval (0,1). The
probability density function is
90,71 1—-6 b—1
p(6) = oo Q-0
Beta(a,b)
where a,b > 0 and Beta is the beta function, i.e.

I0<6<1)

Beta(a,b) = M and T'(a) = /000 e d.

The beta distribution has the following properties:

o El0] = %,

o Vm“[ﬂ = W‘IM’ and

o Be(1,1) £ Unif(0,1).

103 - Bayesian parameter estimation October 4, 2021 8/16



Bayesian statistics Parameter estimation

Beta densities
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Bayesian statistics Parameter estimation

Beta posterior

Suppose we have made 100 sensors according to a particular protocol and 2 have a sensitivity

below a pre-determined threshold. Let Y be the number below the threshold. Assume
Y ~ Bin(n,0) with n = 100 and 6 ~ Be(1, 1), then

Oly ~ Be(l+y,1+n—1y) < Be(3,99).
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Bayesian statistics Parameter estimation

Posterior density

Posterior density
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Bayesian statistics Parameter estimation

Posterior expectation

Often times it is inconvenient to provide a full posterior and so we often summarize using a

point estimate from the posterior. For a point estimate, we can use the posterior expectation:
1+y 14y

A+y)+1+n—-y) 2+n

éBayes = E[e‘y] -

(1+y)/(2+n)

[1] 0.02941176

Note that this is close, but not exactly equal to

Orvre = y/n. Since the MLE is unbiased, this posterior
expectation will generally be biased but it is still
consistent since éBayes — éMLE.
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Bayesian statistics Parameter estimation

Credible intervals

A 100(1 — a)% credible interval is any interval (L, U) such that

U
l—a= / p(f]y)do.
L

An equal-tail 100(1 — a)% credible interval is the
interval L,U) such that

L [e%s)
af2 = / p(6]y)d6 = /U p(6ly)db.

—00

ci = gbeta(c(.025,.975), 1+y, 1+n-y)
round(ci, 3)
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Bayesian statistics Parameter estimation

Equal-tail 95% credible interval

Posterior density with 95% area shaded
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Bayesian statistics Parameter estimation

Summary

Bayesian parameter estimation involves
1. Specifying a model p(y|#) for your data.
2. Specifying a prior p(6) for the parameter.
3. Deriving the posterior

p(yl0)p(0)
p(y)

This equation updates your prior belief, p(0),
about the unknown parameter 6 into your posterior
belief, p(f|y), about 6.
4. Calculating quantities of interest, e.g.
o Posterior expectation, E[f|y]
o Credible interval

(STAT587@ISU) 103 - Bayesian parameter estimation October 4, 2021 15/16
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Bayesian statistics Parameter estimation

Bayesian analysis for binomial model summary

Let Y ~ Bin(n,0) and assume 6 ~ Be(a,b). Then
Oly ~ Be(a+y,b+n—y).

A default prior is 0 ~ Be(1,1) < Unif(0,1).

R code for binomial analysis:
a<-1; b<-1

y <- 3; n <- 10

curve(dbeta(x,ay,b+n-y))

(a+y)/(a+b+n)

gbeta(.5, a+y, b+n-y)
gbeta(c(.025,.975), aty, b+n-y)

pbeta(0.5, at+y, b+n-y)

gbeta(c(0,.95), at+y, b+n-y)
gbeta(c(.05,1), at+y, b+n-y)
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Exponential distribution Probability density function

Exponential distribution

The random variable X has an exponential distribution with rate parameter A\ > 0 if its
probability density function is

p(x|\) = Ae M I(z > 0).
We write X ~ Exzp(\).
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Exponential distribution Probability density function - graphically

Exponential probability density function

Exponential random variables
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Exponential distribution Mean and variance

Exponential mean and variance

If X ~ Exp()), then

and
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Exponential distribution Cumulative distribution function

Exponential cumulative distribution function
If X ~ Exp()), then its cumulative distribution function is

F(x) —/ Ae Mdt = ... =1 -\,
0

The inverse cumulative distribution function is

1, —log(1—p)
Fl(p) = —
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Exponential distribution Cumulative distribution function - graphically

Exponential cumulative distribution function - graphically

Exponential random variables
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Exponential distribution Memoryless property

Memoryless property

Let X ~ Exp()), then
P(X >z+c[X >c)=P(X > z).
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Exponential distribution Parameterization by the scale

Parameterization by the scale

A common alternative parameterization of the exponential distribution uses the scale 5 = %
In this parameterization, we have

f(z) = lefx/ﬂ I(z > 0)
g
and

EX]|=p and Var[X] = 2
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Exponential distribution [ESIIUINEIY

Summary

Exponential random variable
e X ~ Exp(\), A\>0
o f(z)=Xe ™ 2>0

[

&
=

Il
>l

1
2

()
<
s}
=
>
I
>
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Gamma distribution

The random variable X has a gamma distribution with
@ shape parameter a > 0 and
@ rate parameter A > 0

if its probability density function is

(03
a—1_—Az
I 0
F(a)x ‘ (z>0)

p(zfen A) =

where I'(«) is the gamma function,

F(a):/ e %z,
0

We write X ~ Ga(a, \).
Gamma distribution October 4, 2021  2/9



Gamma distribution Probability density function - graphically

Gamma probability density function

Gamma random variables
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Gamma distribution Mean and variance

Gamma mean and variance

If X ~ Ga(a, ), then

o\ o
E[X] = a—lo=Arg,. .. — =
[X] /0 xr(a)w e x 5
and - 2 o
_ _ @ a1l Arg, — .. = &
Var[X] —/0 (:1: A) F(a)x e “dx 2
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Gamma distribution Cumulative distribution function

Gamma cumulative distribution function

If X ~ Ga(a, \), then its cumulative distribution function is

_ ‘ i a—le—At .= '7(0476517)
Pla) = /0 o dt B

where y(a, fx) is the incomplete gamma function, i.e.

Bx
v(a, Bz) = / t* e~ tdt,
0
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Gamma distribution Cumulative distribution function - graphically

Gamma cumulative distribution function - graphically

Gamma random variables
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Gamma distribution Relationship to exponential distribution

Relationship to exponential distribution

If X; %Y Exp()), then

Y = iXi ~ Ga(n, \).

i=1

Thus, Ga(1, ) 4 Exp()\).
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Gamma distribution Parameterization by the scale

Parameterization by the scale

A common alternative parameterization of the Gamma distribution uses the scale § = % In
this parameterization, we have

_ a—1_—z/0 I 0
f(z) F(a)@o‘x e (x > 0)
and
EX]=ab and Var[X] = ab?.
Gamma distribution
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Gamma distribution Summary

Summary

Gamma random variable
e X ~ Ga(a, ), a,A>0
° f( ) = a—le—)\x
o BX]=%

o Var[X ]:%

—a):r: , x>0

(STAT587@ISU) Gamma distribution October 4, 2021 9/9



Error in library("MCMCpack"): there is no package called ’MCMCpack’

Inverse gamma distribution

STAT 587 (Engineering)
lowa State University

October 4, 2021

(STAT587@ISU) Inverse gamma distribution October 4, 2021 1/6



Inverse gamma distribution Probability density function

Inverse gamma distribution

The random variable X has an inverse gamma distribution with
@ shape parameter a > 0 and
@ scale parameter 5 >0

if its probability density function is

where I'(«) is the gamma function,

F(a):/ e %z
0

We write X ~ IG(«, B3).
Inverse gamma distribution October 4, 2021 2/6



Inverse gamma distribution Probability density function - graphically

Inverse gamma probability density function

Inverse gamma random variables
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Inverse gamma distribution Mean and variance

Inverse gamma mean and variance

If X ~ IG(a, B), then

—a—1_-8/x ﬁ
b S 1
E[X] /o z ()x e dx T o>
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Inverse gamma distribution Relationship to gamma distribution

Relationship to gamma distribution

If X ~ Ga(a, \) where X is the rate parameter, then

Y = % ~ IG(a, \).
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Inverse gamma distribution Summary

Summary

Inverse gamma random variable
o X ~IG(a, ), a, >0
o f(z)=Luole BT >0

(o)
o B[X]=Lr a>1
ﬁ2
o VCLT[X] :m,a>2
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Probability density function
Student’s t distribution

The random variable X has a Student's ¢ distribution with degrees of freedom v > 0 if its
probability density function is

We write X ~ t,,.

(STAT587@ISU) Student’s ¢-distribution October 4, 2021 2/13



e e =L
Student's t probability density function

Student's t random variables

0.4+
=
803-
c
o
2 Degrees of freedom
> W
202 3 !
@ *-1 - 10
g A
© 1
° \ 100
£ \
: \
8 014 \
a Y
N

Student’s ¢-distribution

October 4, 2021 3/13



Student’s ¢ distribution Mean and variance

Student’s ¢ mean and variance

If T~ t,, then
v+1
00 T (Eiggl) 22\ 7 2
E[X]—/ T 2/ (1+> dr=---=0, v>1
oo VYTI(%) v
and
v+1
o0 r (4 2\ 2 v
2 2
Var[X] /0 (x —0) MF(;)( + 1/) dx g V>
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Student’s ¢ distribution Cumulative distribution function - graphically

Gamma cumulative distribution function - graphically

Cumulative distribution function, F(x)

Student's t random variables

1.001

0.754

0.50 4

0.25

0.00 4

Degrees of freedom
1
- 10
--- 100

Student’s ¢-distribution

October 4, 2021

5/13



Generalized Student'’s ¢ distribution Location-scale ¢ distribution

Location-scale ¢ distribution

If X ~t,, then
Y =pu+o0X ~t,(u,0°)
for parameters:
@ degrees of freedom v > 0,
@ location p and
@ scale o > 0.

By properties of expectations and variances, we can
find that

E[Y] = p, v>1
and

L)
o v > 2.
v—2""

VarlY] =
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Generalized Student'’s ¢ distribution Probability density function

Generalized Student’s ¢ probability density function

The random variable Y has a generalized Student’s ¢ distribution with

o degrees of freedom v > 0,
@ location p, and
@ scale o >0
if its probability density function is

vl a2\ T
=g (3 [57])

We write Y ~ t, (i1, 0%).
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Generalized Student'’s ¢ distribution t with 1 degree of freedom

t with 1 degree of freedom

If T ~ t1(p1,0%), then T has a Cauchy distribution and we write
T ~ Ca(u,o?).

If T~ t1(0,1), then T has a standard Cauchy distribution. A Cauchy random variable has no
mean or variance.
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Generalized Student'’s ¢ distribution As degrees of freedom increases

As degrees of freedom increases

If T, ~ t,(u,0?), then
lim T, £ X ~ N(u,0?)

V—00
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Generalized Student’s ¢ distribution t distribution arise from a normal sample

t distribution arising from a normal sample

Let X; id N(u,02). We calculate the sample mean

- 1
X=-) X
i
and the sample variance
1 n
2 _ 2
5= n—1 EE:(}(% - %)
=1
Then _
X —p
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Generalized Student'’s ¢ distribution Inverse-gamma scale mixture of a normal

Inverse-gamma scale mixture of a normal

If

X|o? ~ N(u,0%/n) and o? ~IG (%, g52>
then

X ~ 1 (1,5 /)
which is obtained by

pz(x) = /p$|gz(x\02)pgz(02)da2

where

@ p, is the marginal density for x

® p,|s2 is the conditional density for x given o2

@ p.o is the marginal density for o2.
(STAT587©ISU) Student’s t-distribution October 4, 2021 12/13
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Generalized Student'’s ¢ distribution Summary

Summary

Student’s ¢ random variable:

T ~t,(,0%), v,0 >0
EX|=pv>1
Var[X] = J4%50% v > 2

v—

Relationships to other distributions
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Bayesian parameter estimation

Recall that Bayesian parameter estimation involves

p(yl0)p(0) p(y|0)p(0)

p(fly) = ply)  [p(yl0)p(6)de)

with

@ posterior p(f|y),
prior p(6),
model p(y|#), and

prior predictive p(y).
For this video, # = (1, 0?) and
y|:u7 o? ~ N(/'L70-2)'
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Bayesian parameter estimation Normal model

Bayesian parameter estimation in a normal model
Let V; "2 N (1, 02) and the default prior

1
p(,0?) o per

Note: This “prior" is not a distribution since its integral is not finite. Nonetheless, we can still derive
the following posterior

—1 —1 2
wly ~ tn_1(7,s*/n) and 02|yN1G(n2 M)

’ 2
where

@ n is the sample size,

@ y= 13"y is the sample mean, and

o s2=_L_ %" (y; —¥)? is the sample variance.
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Bayesian parameter estimation Moments for the mean

Posterior for the mean

The posterior for the mean is

ply ~ tn-1(7,5%/n)
and from properties of the generalized Student’s ¢ distribution,
we know

e Eluly] =7 forn > 2,

(n—1)s2

o Varluly] = =3) /n for n > 3,

and B
— 2 ~t
n—1-
s//n
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Credible intervals for the mean
Credible intervals for
Since _
1=

~ Ty

a 100(1 — a)% equal-tail credible interval is

y+ tnfl,a/2 S/\/?l

where t,,_1 /2 Is a ¢ critical value such that
P(Tnfl < tn—l,a/?) =1- a/2 when Tn,1 ~ tnfl.

For example, t10_170.05/2 is

n 10
a 0.05
qt(1-a/2, df = n-1)

[1] 2.262157

(STAT587@ISU) 14 - Bayesian parameter estimation in a normal model October 4, 2021 5/20



Moments for the variance
Posterior for the variance

The posterior for the mean is

9 n—1 (n—1)s?
oy IG( 53

and from properties of the inverse Gamma distribution,
we know

o Elo?|y] = % for n > 3,

waa(n_l (n—1)32>

and

o2 2 72

where (n — 1)s2/2 is the rate parameter.
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Bayesian parameter estimation Credible intervals for the variance

Credible intervals for o2

For a 100(1 — @)% credible interval, we need
a/2 = P(c® < Lly) = P(c* > Uly).

To do this, we will find

11 11
2=P(=>=|y|=P( = <=|y].
o= (G gln) = (G <o)

Here is a function that performs this computation

qinvgamma <- function(p, shape, scale = 1)
1/qgamma(1-p, shape = shape, rate = scale)
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Bayesian parameter estimation Posterior for the standard deviation

Posterior for the standard deviation, o

The variance is hard to interpret because its units are squared relative to Y;. In contrast, the
standard deviation ¢ = v/02 units are the same as Y;.

For credible intervals (or any quantile), we can compute
the square root of the endpoints since

P(0® < c*) = P(o < c).

Find the pdf through transformations of random
variables. In R code,

dinvgamma <- function(x, shape, scale = 1)
dgamma(1/x, shape = shape, rate = scale)/x"2

dsqrtinvgamma = function(x, shape, scale)
dinvgamma(x~2, shape, scale)*2*x
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Yield data

Warning: The ‘path¢ argument of ‘write_csv()‘ is deprecated as of readr 1.4.0.
Please use the ‘file‘ argument instead.

Suppose we have a random sample of 9 lowa farms and we obtain corn yield in bushels per
acre on those farms. Let Y; be the yield for farm i in bushels/acre and assume

Y ™ N, 0?).
We are interested in making statements about j and o?.

yield_data <- read.csv("yield.csv")
nrow(yield_data)

[11 9
yield_data

farm yield
1 farml 153.5451
2 farm2 205.6999
3 farm3 178.7548
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Yield data analysis Histogram of yield

Histogram of yield
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Yield data analysis Calculate sufficient statistics

Calculate sufficient statistics

n = length(yield_data$yield); n
[1] 9
sample_mean = mean(yield_data$yield); sample_mean

[1] 185.5323

sample_variance = var(yield_data$yield); sample_variance

[1] 470.2817

Use these sufficient statistics to calculate:

posterior densities

posterior means

credible intervals
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Yield data analysis Posterior densities

Posterior density for 1

Posterior density for population mean
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Yield data analysis Posterior densities

Posterior density for o

Posterior density for population variance
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Yield data analysis Posterior means

Posterior means

sample_mean

[1] 185.5323

Posterior mean for i is Efu|y] = 186 bushels/acre.
post_mean_var = (n-1)*sample_variance / (n-3)
post_mean_var

[1] 627.0422

Posterior mean for o2 is E[o?|y] = 627 (bushels/acre)?.
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Yield data analysis Credible intervals

Credible intervals

a = 0.05

mean_ci = sample_mean + c(-1,1) * qt(1-a/2, df = n-1) * sqrt(sample_variance/n)
mean_ci

[1] 168.8630 202.2017

So a 95% credible interval for p is (169,202)
bushels/acre.

var_ci = ginvgamma(c(a/2, 1-a/2),

shape = (n-1)/2,

scale = (n-1)*sample_variance/2)
var_ci

[1] 214.5623 1726.0175

2 i~ (91K 179A)\
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Yield data analysis Credible intervals

Posterior density for 1

Posterior density for population mean
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Yield data analysis Credible intervals

Posterior density for o

Posterior density for population variance
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Credible intervals
Posterior for the standard deviation, o

sd_median = sqrt(qinvgamma(.5, shape = (n-1)/2, scale = (n-1)*sample_variance/2))
sd_median

[1] 22.63362

So the posterior median for o is 23 bushels/acre.

sd_ci = sqrt(var_ci)
sd_ci

[1] 14.64795 41.54537

So a posterior 95% credible interval for o is 15, 42
bushels/acre.
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Yield data analysis Credible intervals

Posterior for the standard deviation, o

Posterior density for population standard deviation
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—

Bayesian inference in a normal model

e Prior: p(u,0%) =1/0?

@ Posterior:
n—1 (n—1)s?
iy~ taa@sPm) and oy~ 1 (ot
n = length(y)
sample_mean = mean(y)
sample_variance = var(y)

sample_mean
(n-1)*sample_variance / (n-3)

var_median
sd_median

qinvgamma(.5, shape = (n-1)/2, scale = (n-1)*sample_variance/2)
sqrt (median_var)

sample_mean + c(-1,1) * qt(1-a/2, df = n-1) * sqrt(sample_variance/n)
var_ci = ginvgamma(c(a/2,1-a/2), shape = (n-1)/2, scale = (n-1)#*sample_variance/2)
sd_ci sqrt (var_ci)

587@ISU) 14 - Bayesian parameter estimation in a normal model October 4, 2021 20/20



[05a - Sampling distribution J

STAT 587 (Engineering)
lowa State University

October 4, 2021

(STAT5870ISU) 105a - Sampling distribution October 4, 2021 1/8



Sampling distribution

Sampling distribution

The sampling distribution of a statistic is the distribution of the statistic over different
realizations of the data.

Find the following sampling distributions:

o IfY; " N(u,02),

and

S/vn
e If Y ~ Bin(n,p),
g-
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Sampling distribution Normal model

Normal model

Let Y; ‘2 N(u,0?), then Y ~ N(u,0?/n).

Sampling distribution for N(35, 25) average

n=20 n=30
0.4
0.4
0.3
0.3
0.2 024
0.1 0411
2001 0.0
2
S n =40 n=50
© 0.6
0.4 041
0.2 0.2
0.0 0.0
300 325 350 375 400 300 325 350 375 400
average
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Sampling distribution Normal model

Normal model

Let Y; ‘¢ N(u,0?), then the t-statistic

>

densit

Y —p
T'=—7—7=~th
S/\/n
Sampling distribution of the t-statistic
n=20 n=30
0.54
041 0.4
0.3- 0.3
0.2+ 0.24
0.1+ 0.14
0.0 0.04
n =40 n =50

P
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Sampling distribution Binomial model

Binomial model
Let Y ~ Bin(n,p), then
Y
P|—=p) =P =np), p =0,
n

Sampling distribution for binomial proportion
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Sampling distribution Approximate sampling distributions

Approximate sampling distributions

Recall that from the Central Limit Theorem (CLT):
n p—
S:ZXi&N(nu,nag) and X =S/n~ N(u,c%/n)
i=1

for independent X; with E[X;] = p and Var[X;] = o2
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A T T
Approximate sampling distribution for binomial proportion

If Y =371, Xi with X; g Ber(p), then

Approximate sampling distributions for binomial proportion
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Sampling distribution Summary

Summary
Sampling distributions:

o IfY; ind N(u,0?),

o Y ~ N(u,0?/n) and
° Yy ~t
S/vn n—1-

o If Y ~ Bin(n,p),
o P(X =p)=P(Y =np)and
o Y UN (p, p[l—p]>_
@ If X; independent with E[X;] = p and Var[X;] = o2,
then

S = ZXi ~ N(np,no?)

i=1

and

= “nT/ 2/
(STAT587@ISU) 105a - Sampling distribution

October 4, 2021

8/8



05 - Confidence intervals J

STAT 587 (Engineering)
lowa State University

October 4, 2021

(STAT587@ISU) 105 - Confidence intervals October 4, 2021 1/11



Exact confidence intervals

The coverage of an interval estimator is the probability the interval will contain the true value
of the parameter when the data are considered to be random. If an interval estimator has
100(1 — a)% coverage, then we call it a 100(1 — a)% confidence interval and 1 — a is the
confidence level.

That is, we calculate
l—a=P(L<O<U)

where L and U are random because they depend on the
data. Thus confidence is a statement about the
procedure.
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Exact confidence intervals Normal mean

Normal model

Ify; ‘2 N(u,0?) and we assume the default prior p(p,0?) oc 1/02, then a 100(1 — a)% credible
interval for p is given by

y+ tnfl,a/28/\/ﬁ-
When the data are considered random

Y-—pu
Tn_ = —
NG

thus the probability  is within our credible interval is

tn-1(0,1)

P (? — tn—l,a/2S/\/ﬁ§ pn < ? + tn—l,a/2S/\/rﬁ)
=P _tn—l,a/2 < % < t"—lvﬂ/2
=P (7tn—1,a/2 <Th-1 < tn—l,a/2)
=1-a.

Thus, this 100(1 — a)% credible interval is also a

100(1 — a)% confidence interval.
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Exact confidence intervals Yield data example

Yield data example

Recall the corn yield example from 104 with 9 randomly selected fields in lowa whose sample
average yield is 186 and sample standard deviation is 22. Then a 95% confidence interval for
the mean corn yield on lowa farms is

186 + 2.31 x 22/v/9 = (169, 202).

(STAT587@ISU) 105 - Confidence intervals October 4, 2021 4/11



Approximate confidence intervals [SIELIEIERIGCTe

Standard error

The standard error of an estimator is an estimate of the standard deviation of the estimator
(when the data are considered random).

If Y ~ Bin(n,#), then

D>
Il

has SE[)] = M

s

If Y; "% N (1, 02), then

p=Y has SE[i) = S/v/n.
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YT IO BTNVl [IISMTISIYEICM  Approximate confidence intervals

Approximate confidence intervals

If an unbiased estimator has an asymptotic normal distribution, then we can construct an approximate

100(1 — a)% confidence interval for E[f] = 6 using

0 =+ 2,25 E[f).

where SE[0] is the standard error of the estimator and P(Z > Zq2) = a/2.

This comes from the fact that if § ~ N (6, SE[0]?), then

P (é - za/QSE(é) <0<f+ za/25E<é))

:P( Zaj2 < Troa SE(9) < Za/g)
~ P (=240 < Z < 2q)2)
=1-—a.
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Approximate confidence intervals Normal mean

Normal example

If Y; " N'(1,02) and we have the estimator /i = Y, then

Eli]=p and  SE[j] = S$/vn

Thus an approximate 100(1 — a)% confidence interval for = E[f] is

pt Za/QSE[:a] =Y+ Za/QS/\/ﬁ-

Note that this is almost identical to the exact
100(1 — a)% confidence interval for p,

Y + tn—l,a/QS/\/ﬁ
and when n is large 2,9 & t),_1,4/2-
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Approximate confidence intervals Critical values

T critical values vs Z critical values

8 21 n

3

g 10
.S - 100
s -=+ 1000

2.4 26
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Approximate confidence intervals Binomial proportion

Approximate confidence interval for binomial proportion
If Y ~ Bin(n,0), then an approximate 100(1 — a)% confidence interval for 0 is

. 6(1—6
G:I:za/2 ( )

where § = Y/n since
E[f)=E [Z] =6
n

and

01— )

n

SE[6] =
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Approximate confidence intervals Gallup poll example

Gallup poll example

In a Gallup poll dated 2017/02/19, 32.1% of respondents of the 1,500 randomly selected U.S.
adults indicated that they were “engaged at work”. Thus an approximate 95% confidence
interval for the proportion of all U.S. adults is

321(1 — .321)

321 £ 1.
0.3 96 x 1500

= (0.30,0.34).
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Confidence interval summary

Model Parameter Estimator Confidence Interval Type
Vi "' N(po®)  p h=F ity igaps/yi exact
y, N(p,02) L n=7 =S Za)28/\/n approximate
Y ~ Bin(n,0) 0 O=y/n O+ Za/g\/é(l —0)/n  approximate
y; 2 Ber(0) 0 6=7 0+ Za)2 0(1—6)/n  approximate

Bayesian credible intervals generally provide approximate
confidence intervals.

Approximate means that the coverage will get closer to the
desired probability, i.e. 100(1 — a)%, as the sample size gets
larger.
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Statistical hypotheses

Statistical hypothesis

A statistical hypothesis is a model for data.

For example,

Y ~ Ber(0)
or
Y ~ Bin(10,0.25)
or
Y; ™ N (0, 02)
or
Y ™ N, 0?).

October 4, 2021 2/10



Statistical hypotheses Translating a scientific hypothesis into a statistical hypothesis

Translating a scientific hypothesis into a statistical hypothesis

Scientific hypothesis: the coin is fair

Statistical hypothesis:
Let Y be an indicator that the coin is flipped heads.

Y ~ Ber(0.5)

Scientific hypothesis: the coin is biased, but we don't
know the probability

Statistical hypothesis:

Y ~ Ber(0).
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Statistical hypotheses Null hypothesis

Null hypothesis

Wikipedia definition:
the null hypothesis, Hy, is the [model] that there is no relationship between two
measured phenomena or no association among groups

My definition:

the null hypothesis is the straw man model that nobody believes is true

For example, the coin is fair
Hy:Y ~ Bin(0.5).

(STAT5870ISU)
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SIENEENW IO Alternative hypothesis

Alternative hypothesis

Wikipedia definition:

the alternative hypothesis, H 4, is [the model] that states something is happening, a
new theory is preferred instead of an old one (null hypothesis).

My definition:

the alternative hypothesis is the model that the researcher believes

For example, the coin is biased, but we don’t know the
probability

Hy:Y ~ Ber(0)

(STAT5870ISU)

Statistical hypotheses October 4, 2021 5/10



Statistical hypotheses Null vs alternative hypothesis

Null vs alternative hypothesis

We typically simplify notation and write null and alternative hypotheses like this:
Model:
Y ~ Ber(0)
Hypotheses:
Hy:0=0.5 versus Hp:60#£05

| prefer

Hy:Y ~ Ber(0.5) versus Hj:Y ~ Ber(0)

so that we remind ourselves that these hypotheses are
models.
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Bayesian hypotheses

Bayesian hypotheses are full probability models for the data.

For example,
Y ~ Ber(0.5)
or
Y |0 ~ Ber(0) and 6 ~ Be(a,b)

for known values of @ and b.
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Bayesian hypotheses

Prior predictive distribution

The prior predictive distribution is the distribution for the data with all the parameters integrated out,
i.e.

p(y) = / p(y|0)p(0)do.
For example, if
Y |0 ~ Ber(9) and 0 ~ Be(a,b)
then
p(y) = [p(yl0)p(6)do

— fol yf)(l _ y)l—Qmea—l(l _ H)b_ldé’

1 1 paty— n—y—
= Beta(a,b) fO ety 1(1 - 0)b+ v=lde
__ Beta(a4y,b+n—y)
- Beta(a,b)

which is the probability mass function for the beta-binomial

Qn
(STAT5870ISU)
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Bayesian hypotheses Comments

Comments

Three points about Bayesian hypotheses:
@ Must use proper priors.
@ No special hypotheses.

@ Not restricted to 2 hypotheses.
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Summary

o Model:
Y ~ Ber(0)

@ Null hypothesis:
Hp:0=0.5
o Alternative hypothesis:

Ha:0+405
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p-values

p-value

A p-value is the probability of observing a statistic as or more extreme than observed if the
model is true.

A p-value is the probability of observing a statistic as or more extreme than the one you
observed if the model is true when the data are considered random.
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p-values Binomial model

Binomial model
Let Hy : Y ~ Bin(13,0.5) and observe y = 3.

Choos
@ statistic is 3,

@ its sampling distribution when the model is true is
Y ~ Bin(13,0.5), and
@ there are three as or more extreme regions:
e Y <3
oY >3
o [Y —13.0.5>|3—13-0.5|
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p-values Binomial model as or more extreme regions

as or more extreme regions

As or more extreme regions for Y ~ Bin(13,0.5) withy = 3

less_than outside greater_than

0.20
=
Rl 11 - -
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2
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2]
©
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=
3
<
Q
© 0.054
o

0.00 4
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Y
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Binomial model p-value calculation
R Calculation

One-sided p-values:
o P(Y <y):
pbinom(y, size = n, prob = p)

[1] 0.04614258

e PY>y)=1-PY<y)=1-PY <y—1)
1-pbinom(y-1, size = n, prob = p)

[1] 0.9887695
Two-sided p-value:
P(lY —nb| < |y —nb]) =2P(Y <y)

2*pbinom(y, size = n, prob = p)

[1] 0.09228516
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p-values Normal model

Normal model

Let Hy:Y; ~ N(3,42) fori = 1,...,6 and you observe § = 6.3, s = 4.1, and

7-3 _ 63-3

tis/\/ﬁ:zl,l/\/é:l.g?’

Choose
@ t-statistic t = 1.97,
@ its sampling distribution when the model is true is
T5 ~ 15, and
@ there are three as or more extreme regions:

° T5 S 197
o Ty > 1.97
o |T5] > 11.97]
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p-values Normal model as or more extreme regions

as or more extreme regions

As or more extreme regions for t = 1.97 with 5 degrees of freedom

less_than outside greater_than

o o
) w

Probability density function
o
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Normal model R calculation
R Calculation

@ One-sided p-values:
] P(T5 < t):
pt(t, df = n-1)

[1] 0.9471422

° P(Tg,Zt):l—P(Tg)<t):1—P(T5§t):
1-pt(t, df = n-1)

[1] 0.05285775

@ Two-sided p-value:
P(|T5| > |t]) = 2P(T5 > 1)

2% (1-pt(t, df = n-1))

[1] 0.1057155
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Interpretation

Small p-values provide evidence that the data are incompatible with the model.

Recall
Y " N (u,0?)
indicates the data
@ are independent,
@ are normally distributed,
@ have a common mean, and

@ have a common variance.
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RIS Summary

Summary

@ p-value: the probability of observing a statistic as or more extreme than observed if the
model is true

@ small p-values provide evidence that the data are incompatible with the model
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Statistical hypothesis testing

A hypothesis test consists of two hypotheses,
e null hypothesis (Hp) and
@ an alternative hypothesis (H,),

which make claims about parameter(s) in a model, and a decision to either
@ reject the null hypothesis or

o fail to reject the null hypothesis.
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Statistical hypothesis testing Binomial model

Binomial model

If Y ~ Bin(n,0), then some hypothesis tests are

Hy:0=20 versus Hyp:0+#06q
or
Hy:0=20 versus Hy:0> 0

or
Hy:0 =06 versus Hy:0 <60
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Statistical hypothesis testing Small data

Small data

Let Y ~ Bin(n, ) with

Hy:0=0.5 versus Hy:0#0.5.

You collect data and observe y = 6 out of n = 13 attempts. Should you reject Hy? Probably
not since 6 ~ E[Y]| = 6.5 if Hy is true.

What if you observed y = 2?7 Well, P(Y = 2) ~ 0.01.
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Statistical hypothesis testing Small data

Large data
Let Y ~ Bin(n, ) with
Hy:0=0.5 versus Hy:0#0.5.

You collect data and observe y = 6500 out of n = 13000 attempts. Should you reject Hy?
Probably not since 6500 = E[Y] if Hy is true. But P(Y = 6500) ~ 0.007.
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Statistical hypothesis testing p-values

p-values

p-value: the probability of observing a test statistic as or more extreme than observed if the
null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if Y ~ Bin(n,6) and Hy : 0 = 6, then

Hi:0<8) — Y <y
or

Hy:0 >0y :>Y2y
or

HA:Q#HO — ]Y—n&olzly—nég\.
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Statistical hypothesis testing Binomial model as or more extreme regions

as or more extreme regions

As or more extreme regions for Y ~ Bin(13,0.5) withy = 2

less than not equal greater than
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Statistical hypothesis testing Binomial model p-value calculation

R “hand” calculation

Hp:0 <05 = p-value=P(Y <y)

pbinom(y, size = n, prob = theta0)

[1] 0.01123047

Hp:0>05 = pvalue=PY >y)=1-PY <y-1)

1-pbinom(y-1, size = n, prob = thetal)

[1] 0.998291

Hy:0+#05 = p-value = P(|Y—nfy| < |y—nbo|)

2*pbinom(y, size = n, prob = thetal)

[1] 0.02246094
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Binomial model p-value calculation
R Calculation

Hp:0<05
binom.test(y, n, p = theta0, alternative = "less")$p.value

[1] 0.01123047

Hjq:0>05
binom.test(y, n, p = theta0O, alternative = "greater")$p.value

[1] 0.998291

Hi:0#05
binom.test(y, n, p = theta0, alternative = "two.sided")$p.value

[1] 0.02246094
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Statistical hypothesis testing Significance level

Significance level

Make a decision to either
@ reject the null hypothesis or

o fail to reject the null hypothesis.

Select a significance level a and
@ reject if p-value < a otherwise

o fail to reject.
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Statistical hypothesis testing Decisions

Decisions
Truth
Decision Hy true Hy not true
reject Hy type | error correct
fail to reject Hy correct type Il error
Then

significance level a is P(reject Hy|Hy true)
and

power is P(reject Ho|Hp not true).
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Statistical hypothesis testing Interpretation

Interpretation

The null hypothesis is a model. For example,
Hy:Y ~ Bin(n,6))

if we reject Hy, then we are saying the data are incompatible with this model.
Recall that Y = 37| X; for X; " Ber(0).
So, possibly

@ the X, are not independent or

@ they don't have a common 6 or

@ 0+ 6yor

@ you just got unlucky.

If we fail to reject Hy, insufficient evidence to say that
the data are incompatible with this model.
106a - Hypothesis tests
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Die tossing example
You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your
friend (somehow) increase the probability of rolling a 47

Let Y be the number of fours rolled and assume Y ~ Bin(6,6). You observed y = 3 and are testing

1 1
H0:0:6 versus HA:0>6.

binom.test(3, 6, p = 1/6, alternative = "greater")$p.value

[1] 0.06228567

With a signficance level of a = 0.05, you fail to reject the
null hypothesis.
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Statistical hypothesis testing ISIULIENY

Summary

@ Hypothesis tests:

Hy:0=20g versus Hy:0+# 0

@ Use p-values to determine whether to

e reject the null hypothesis or
o fail to reject the null hypothesis.

@ More assessment is required to determine if other
model assumptions hold.
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p-values and confidence intervals

p-values and confidence intervals

From the ASA statement on p-values:

a p-value is the probability under a specified statistical model that a statistical summary
of the data would be equal to or more extreme than its observed value.

A 100(1 — a)% confidence interval contains the true value of the parameter in 100(1 — a)% of
the intervals constructed using the procedure.

Both are based on the sampling distribution.

Let Hy : 0 = 0y,

o if p-value < a, then 100(1 — a)% CI will not
contain 6y but

e if p-value > a, then 100(1 — a)% Cl will contain 6.

(STAT587@ISU) 106b - Correspondence between p-values and confidence October 4, 2021 2/7



p-values and confidence intervals Examples

Normal model

ind

Let Y; '~ N(p,0?) with Hy : = po = 1.5.

y = rnorm(10, mean = 3, sd = 1.5)

a = 0.05
t = t.test(y, mu = muO, conf.level = 1-a)
t$p.value

[1] 0.003684087
round(as.numeric(t$conf.int),2)

[1] 2.26 4.37

a = 0.001
t = t.test(y, mu = muO, conf.level = 1-a)
t$p.value

[1] 0.003684087

round(as.numeric(t$conf.int),2)
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p-values and confidence intervals Explanation

Explanation

Values for p that fail to reject Hy at significance level a are precisely the 100(1 — a)%
confidence interval.
a=0.1

ci = t.test(y, conf.level = 1-a)$conf.int; round(as.numeric(ci),2)

[1] 2.46 4.17

Hypothesis tests with various null hypothesis values

1.004
0.754
)
=
? 0.50
Q
0.25
0.00 _/ ;
2 4 6
Ho
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p-values and confidence intervals Explanation

Explanation

Values for p that fail to reject Hy at significance level a are precisely the 100(1 — a)%
confidence interval.
a=0.1

ci = t.test(y, conf.level = 1-a)$conf.int; round(as.numeric(ci),2)

[1] 2.46 4.17

Hypothesis tests with various null hypothesis values

1.004
0.754
)
=
? 0.50
Q
0.25
0.00 _/ ;
2 4 6
Ho
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p-values and confidence intervals Explanation

Explanation

Values for p that fail to reject Hy at significance level a are precisely the 100(1 — a)%
confidence interval.
a=0.1

ci = t.test(y, conf.level = 1-a)$conf.int; round(as.numeric(ci),2)

[1] 2.46 4.17

Hypothesis tests with various null hypothesis values

1.001
0.754
®
=
? 0.50
%
0.25 4
0.00 _/ ;
2 4 6
Ho
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p-values and confidence intervals Importance

Importance

The population mean was significantly different than 1.5 (p = 0.004).
A 90% confidence interval for the population mean was (2.46, 4.17).

From the second statement, you know

@ the p-value is less than 0.1 for any value outside
the interval,

@ a range of reasonable values for the population
mean is given by the interval, and

@ a measure of uncertainty given by the interval
width and confidence level.
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Statistical hypothesis testing

A hypothesis test consists of two hypotheses:
e null hypothesis (Hp) and
@ an alternative hypothesis (H4)

which make a claim about parameters in a model and a decision to either
@ reject the null hypothesis or

o fail to reject the null hypothesis.
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t-tests

If Y; ind N(u,0?), then typical hypotheses about the mean are

Hy:p=po versus Ha:p# o

or
Hy:p=po versus Hp:p> o

or
Hy:p=po versus Hp:p < po
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Statistical hypothesis testing t-statistic

t-statistic

Then _
Y — Mo

N

has a t,,_1 distribution when Hj is true.
The as or more extreme region is determined by the alternative hypothesis.
Hp:p<py = T <t

or
Hy:p>p = T >t

or
Ha:p#po = |T| > [t

where T ~ t,,_1.
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Statistical hypothesis testing Example data

Example data

Suppose we assume Y; ind N(u,0?) with Hg : 1 = 3 and we observe
n=6,y=6.3, and s =4.1.

Then we can calculate
t=1.97

which has a t5 distribution if the null hypothesis is true.
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Statistical hypothesis testing Normal model as or more extreme regions

as or more extreme regions

As or more extreme regions for t = 1.97 with 5 degrees of freedom

less than not equal greater than
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Normal model as or more extreme regions
R Calculation

Hy:p<3
t.test(y, mu = mu0, alternative = "less")$p.value
[1] 0.9461974

Hy w > 3
t.test(y, mu = mu0, alternative = "greater")$p.value

[1] 0.05380256

Hy: M 7é 3

t.test(y, mu = muO, alternative = "two.sided")$p.value

[1] 0.1076051
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ey
Interpretation

The null hypothesis is a model. For example,

Ho: Y ™ N(uo, 0?)

if we reject Hy, then we are saying the data are incompatible with this model.
So, possibly

o the Y; are not independent or

@ they don't have a common o2 or
°
°

they aren’t normally distributed or

[ F fio OF
@ you got unlucky.

If you fail to reject Hy,then there is insufficient
evidence to say that the data are incompatible with the

null model.
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Sl 7ol el
Quality control example

An I-beam manufacturing facility has a design specification for I-beam thickness of 12 millimeters.
During manufacturing a random sample of |-beams are taken from the line and their thickness is
measured.

y

[1] 12.04 11.98 11.97 12.12 11.90 12.05 12.14 12.13 12.18 12.23 12.03 12.03

t.test(y, mu = 12)

One Sample t-test

data: y
t = 2.4213, df = 11, p-value = 0.03393
alternative hypothesis: true mean is not equal to 12
95 percent confidence interval:
12.00607 12.12727
sample estimates:
mean of x
12.06667

The small p-value suggests the data may be incompatible
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Statistical hypothesis testing ISIULIENY

Summary

o t-test, Y; " N(u,0?):

Ho:p= o versus Ha o # 1o

@ Use p-values to determine whether to
e reject the null hypothesis or
o fail to reject the null hypothesis.

@ More assessment is required to determine if other
model assumptions hold.
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Posterior model probabilities One-sided alternative hypotheses

One-sided alternative hypotheses

For “one-sided alternative hypotheses” just calculate posterior probabilities.
For example, with hypotheses
Hy: 0 <6 versus Hy:0 >0

Calculate
p(Holy) = P(6 < boly)

and
p(Haly) = P(0 > toly).
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Posterior model probabilities One-sided alternative hypotheses

Posterior probabilities

Let Y ~ Bin(n, ) with hypotheses
Hy:0<0.5 and Hy:60>0.5.

Assume 0 ~ Unif(0,1) and obtain the posterior i.e.
Oly ~ Be(1+y,1+n—vy).

Then calculate
p(Holy) = P(0 < 0.5]y) =1 —p(Haly).

n = 10
y=3
probHO = pbeta(0.5, 1+y, 1+n-y)
probHO

[1] 0.8867188
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Posterior model probabilities Posterior model probabilities

Posterior model probabilities

Calculate the posterior model probabilities over some set of J models i.e,

py[M;)p(M;) _ plylMy)p(My)
p(y) S p(y[ M) p(My,)

p(M;ly) =

In order to accomplish this, we need to determine

@ prior model probabilities:
p(M;) forall j=1,...,J

and

@ priors over parameters in each model:

p(y|M;) = | p(y|0)p(0|M;)d6.
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Posterior model probabilities Prior predictive distribution

Prior predictive distribution

The prior predictive distribution for model Mj is
p(o13) = [ pl0)p(6101;)a0.

For example, let

ylp, Mj ~ N(u, 1)

and
plM; ~ N(0,C),
then
y|M; ~ N(0,1+C).
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Posterior model probabilities Bayes Factor

Bayes Factor

In the context of a null hypothesis (Hy) and an alternative hypothesis (H4) we have

_ p(y|Ho)p(Ho)
p(Holy) _p(y\HO)p(HO)'?‘p(yu?IA)p(HA)

_ plylHa) p(Ha)] !
= [1 + o) P(Ho)}

1
H
- [1 + BF(Hy : HO)’I’)((H/S))}

where ( |H )
ply|41 A

BF(H, : Hy) = 2YI2A)

(Ha : Ho) = Ty

is the Bayes Factor for H4 over Hy.
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Posterior model probabilities Normal model

Normal model

Let Y ~ N(u,1) and Hy: p=0vs Hy : p# 0.
Assume p(Hy) = p(Ha) and pu|H4 ~ N(0,1),

then
y|Hy ~ N(0,1)
y|[Ha ~ N(0,2).
y = 0.3
probHO = 1/(1+dnorm(y, O, sqrt(2))/dnorm(y, 0, 1))
probHO

[1] 0.5803167
1-probHO

[1] 0.4196833
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Posterior model probabilities Normal model

Ratio of predictive densities

Ratio of predictive densities
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Posterior model probabilities Normal model

Normal model

Posterior probabilities as a function of the data
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Posterior model probabilities Prior impact

Prior impact

Let Y ~ N(u,1) and Hy: p=0vs Hy : p# 0.
Assume p(Hy) = p(Ha) and p|H4 ~ N(0,C),

then

y|HO ~ N(O7 1)

ylHy ~ N(0,1+0C)
and .

p(ylHa)|™
p(Hoply) = [1 4+ —— .
(il (y/Ho)
107 - Posterior model probability
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Posterior model probabilities Prior impact

Interpretation

Since posterior model probabilities depend on the prior predictive distribution

p(y|M;) = / p(y10)p(6]M; )do

posterior model probabilities tell you which model does a better job of prediction and priors,
p(0|M;), must be informative.
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Prior impact
Do pvalues and posterior probabilities agree?
Suppose Y ~ Bin(n,f) and we have the hypotheses Hy : = 0.5 and Hx : 6 # 0.5 We
observe n = 10,000 and y = 4,900 and find the p-valueis
p-value ~ 2P(Y < 4900) = 0.0466
so we would reject Hy at the 0.05 level.
If we assume p(Hp) =p(Ha) = 0.5 and 8|Ha ~ Unif(0,1), then the posterior probability of
Hy, is

p(Holy) = = 0.96,

1
1+1/10.8
so the probability of Hy being true is 96%.

It appears the posterior probability of Hy and p-value

completely disagree!
107 - Posterior model probability October 4, 2021 13/16



Jeffey-Lindley Parador
Jeffrey-Lindley Paradox

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses Hy and Hj
given data y and find

@ a frequentist test result is significant leading to rejection of Hy, but
@ the posterior probability of Hy is high.

This can happen when

the effect size is small,

@ n is large,

@ Hj is relatively precise,

@ Hj is relative diffuse, and
°

the prior model odds is ~ 1.
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oA P
No real paradox

p-values:
@ a p-value measure how incompatible your data are with the null hypothesis, but

@ it says nothing about how incompatible your data are with the alternative hypothesis.

Posterior model probabilities are

@ a measure of the (prior) predictive ability of a model
relative to the other models, but

@ this requires you to have at least two (or more)
well-thought out models with informative priors.

Thus, these two statistics provide completely different
measures of model adequecy.
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Posterior model probabilities [SIIRINEI

Summary

@ Use posterior probabilities for one-sided alternative hypotheses.

@ Posterior model probabilities evaluate relative predictive ability.
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il
One probability

Consider the model Y ~ Bin(n,6).

We have discussed a number of statistical procedures to draw inferences about 8:
e Frequentist: based on (asymptotic) distribution of Y/n
e p-value for test of Hy : 6 = 6,
e confidence interval for 6,
@ Bayesian: based on posterior for 8

e credible interval for 6,
e posterior model probability, e.g. p(Hp|y), and
e posterior probability statements, e.g. P(6 < 6ply).

Now, we will consider what happens when we have
multiple 0s.

(STAT587@ISU) 108 - Comparing probabilities October 4, 2021
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Comparing probabilities Two probabilities

Two probabilities
Consider the model ‘
Yy i Bin(ng, by)

Y

for g = 1,2 and you are interested in the relationship between 6; and 6s.
Y.

@ Frequentist: based on asymptotic distribution of T e

e p-value for a hypothesis test, e.g. Hy: 0 = 65,
e confidence interval for 6; — 60,
@ Bayesian: based on posterior distribution of 81 — 65:

e credible interval for 61, 05,
e posterior model probability, e.g. p(Hply), and

e probability statements, e.g. P(61 < 62]y).

where y = (y1,y2).

(STAT5870ISU)
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Comparing probabilities Two probabilities

Data example

Suppose you have two manufacturing processes and you are interested in which process has
the larger probability of being within the specifications.
So you run the two processes and record the number of successful products produced:

@ Process 1: 135 successful products out of 140 attempts

@ Process 2: 216 successful products out of 230 attempts

In R, you can code this as two vectors:

c(135,216)
c(140,230)

successes
attempts

or, better yet, as a data.frame:

d = data.frame(process factor(1:2),
successes

attempts

successes,
attempts)
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Comparing probabilities Two probabilities

p-values and confidence intervals

Because there is no indication that you expect one of the two manufacturing processes to have a higher
probability, you should perform a two-sided hypothesis test, i.e.

@ Hy: 01 = 92
@ Hy: 91 55 92
and calculate a two-sided confidence interval for 01 — 0-.

prop.test(d$successes, d$attempts)

2-sample test for equality of proportions with continuity correction

data: d$successes out of d$attempts
X-squared = 0.67305, df = 1, p-value = 0.412
alternative hypothesis: two.sided
95 percent confidence interval:
-0.02417591 0.07448647
sample estimates:
prop 1 prop 2
0.9642857 0.9391304

587@ISU) 108 - Comparing probabilities October 4, 2021 5/16



T probabities
Bayesian analysis
Assume i
Yy "~ Bin(ng, by)

and
ind

6, ~ Be(1,1).
Then the posterior is
Ogly "™ Be(1+ yg, 1+ ny — yy).
From this we can compute

P(91 < 02|y) = P(el — by < 0|y)

and a credible interval for #; — 05 by simulating values

ine A. A
108 - Comparing probabilities October 4, 2021 6/16
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Comparing probabilities Two probabilities

Posteriors

Posterior densities
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Comparing probabilities Two probabilities

Credible interval for the difference

To obtain statistical inference on the difference, we draw samples from the posterior and then
calculate the difference:

n <- 1eb

thetal <- rbeta(n, 1+d$success[1], 1+d$attempts[1] - d$success[1])
theta2 <- rbeta(n, 1+d$success[2], 1+d$attempts[2] - d$success[2])
diff <- thetal - theta2

mean (diff)

[1] 0.02235018

quantile(diff, c(.025,.975))

2.5% 97.5%
-0.02489203 0.06739588

mean(diff < 0)
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STTE LTS
Multiple probabilities

Now, let's consider the more general problem of
Yy e Bin(ng, b,)
for g =1,2,...,G and you are interested in the relationship amongst the 0.

We can perform the following statistical procedures:

@ Frequentist: based on distribution of Y7,...,Ys
o p-value for test of Hy : 0, = 0 for all g,
o p-value for test of Hy : 0, = 04,
e confidence interval for 6, — 0/,
@ Bayesian: based on posterior for 4, ...,0g:
o credible interval for 8, — 6,
e posterior model probability, e.g. p(Holy), and
o probability statements, e.g. P(6, < 04/|y).
where g and ’g represent different values.
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Comparing probabilities Multiple probabilities

Data example

Suppose you have three manufacturing processes and you are interested in which process has
the larger probability of being within the specifications.

So you run the three processes and record the number of successful products produced:
@ Process 1: 135 successful products out of 140 attempts
@ Process 2: 216 successful products out of 230 attempts
@ Process 3: 10 successful products out of 10 attempts

In R, you can code this as two vectors:

c(135,216,10)
c(140,230,10)

successes
attempts

or, better yet, as a data.frame:

d = data.frame(process = factor(1:3),
successes = successes,
attempts = attempts)
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Comparing probabilities Multiple probabilities

p-values

The default hypothesis test is

Hy:0,=0 forall g versus Hy: 04 % 6y for some g, ¢’

prop.test(d$successes, d$attempts)

Warning in prop.test(d$successes, d$attempts): Chi-squared approximation may be
incorrect

3-sample test for equality of proportions without continuity correction

data: d$successes out of d$attempts
X-squared = 1.6999, df = 2, p-value = 0.4274
alternative hypothesis: two.sided
sample estimates:

prop 1 prop 2 prop 3
0.9642857 0.9391304 1.0000000
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Comparing probabilities Multiple probabilities

Confidence intervals

Confidence interval for 6; — 03:

prop.test(d$successes[c(1,3)], d$attempts[c(1,3)])$conf.int

Warning in prop.test(d$successes[c(1, 3)], d$attempts[c(l, 3)1):

Chi-squared
approximation may be incorrect

[1] -0.10216886 0.03074029
attr(,"conf.level")
[1] 0.95
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Comparing probabilities Multiple probabilities

An alternative test
An alternative test for equality amongst the proportions uses chisq.test().

d$failures <- d$attempts - d$successes
chisq.test(d[c("successes","failures")])

Warning in chisq.test(d[c("successes", "failures")]): Chi-squared approximation
may be incorrect

Pearson's Chi-squared test

data: d[c("successes", "failures")]
X-squared = 1.6999, df = 2, p-value = 0.4274
chisq.test(d[c("successes","failures")], simulate.p.value = TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

data: d[c("successes", "failures")]
X-squared = 1.6999, df = NA, p-value = 0.4158
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Comparing probabilities Multiple probabilities

Posteriors
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Comparing probabilities Multiple probabilities

Credible interval for differences

To compare the probabilities, we draw samples from the posterior and compare them.

posterior_samples <- function(d) {
data.frame(
rep = 1:1e5,
name = pasteO("theta", d$process),
theta = rbeta(leb, 1+d$successes, 1+d$attempts-d$successes),
stringsAsFactors = FALSE)

}

draws <- d %>% group_by(process) %>% do(posterior_samples(.)) %>% ungroup() %>%
select (-process) %> tidyr::spread(name, theta)

draws %>%

summarize (*P(thetal>theta2|y) = mean(draws$thetal > draws$theta2),
“P(thetal>theta3|y) = mean(draws$thetal > draws$theta3),
“P(theta2>theta3|y)” = mean(draws$theta2 > draws$theta3)) %>%

gather (comparison, probability)

# A tibble: 3 x 2

comparison probability
<chr> <dbl>
1 P(thetal>theta2l|y) 0.840
2 P(thetai>theta3|y) 0.632
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Comparing probabilities Summary

Summary

Multiple (independent) binomial proportions
@ p-values
@ confidence intervals
@ posterior densities
@ credible intervals
°

posterior probabilities
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One mean summary One mean

One mean

Consider the model Y; ind N(u,0?). We have discussed a number of statistical procedures to

draw inferences about p:

@ Frequentist: based on distribution of S?/;\/%

e p-value for a hypothesis test, e.g. Hy : 11 = po,
e confidence interval for p,
@ Bayesian: based on posterior for p

o credible interval for p,
e posterior model probability, e.g. p(Hply), and
o posterior probabilities, e.g. P(u < po]y).

Now, we will consider what happens when you have
multiple us.
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Comparing two means Normal model

Two means

Consider the model
ind

ngi ~ N(Mmai)

forg=1,2andi=1,...,n4. and you are interested in the relationship between p; and ps>.
@ Frequentist: based on distribution of

Yi-Yo— (1 —p2)
S2 S2
Ve

o p-value for a hypothesis test, e.g. Hy : i1 = o,
e confidence interval for puy — po,

@ Bayesian: posterior for p1, 2, i.e. p(p1, p2ly)
e credible interval for p; — pa,
e posterior model probability, e.g. p(Hply), and
o probability statements, e.g. P(u1 < uz2ly).

where y = (Y11, ..., Ylng, Y215+ -+ Y20 )
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hazled
Data example

Suppose you have two manufacturing processes to produce sensors and you are interested in
the average sensitivity of the sensors.

So you run the two processes and record the sensitivity of each sensor in units of mV/V/mm
Hg (http://www.ni.com/white-paper/14860/en/).
And you have the following summary statistics:

# A tibble: 2 x 4

process n mean sd
<chr> <int> <dbl> <dbl>
1P1 22 7.74 1.87
2 P2 34 9.24 2.26

(STAT587@ISU) 109 - Comparing means October 4, 2021 4/21
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Comparing two means Normal model

p-values and confidence intervals

Because there is no indication that you have any expectation regarding the sensitivities of
process 1 compared to process 2, we will conduct a two-sided two-sample t-test assuming the
variances are not equal, i.e.

Yyi ™ N(pg, 02)
and
Ho:py=pe and Ha:py # po

t.test(sensitivity ~ process, data = d2)

Welch Two Sample t-test

data: sensitivity by process
t = -2.6932, df = 50.649, p-value = 0.009571
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-2.610398 -0.380530
sample estimates:
mean in group Pl mean in group P2
7.743761 9.239224
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Comparing two means Bayesian analysis

Posterior for 11, o

Assume
ind

Vo N o?) and plon, s, o)
Then

ind _ 2
,ug|y ~ tng_l(ygv Sg/ng)
and a draw for iy can be obtained by taking

_ ind
Yy + Tngflsg/\/ Ng, Tngfl kS tngfl(oa 1)

Simulations:
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Comparing two means Bayesian analysis

We can use these draws to compare the posteriors
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Comparing two means Bayesian analysis

Credible interval for the difference

To obtain statistical inference on the difference, we use the samples and take the difference

d3 <- sims %>%
spread(process, mu) %>%
mutate(diff = P1-P2)

mean (d3$diff)

[1] -1.493267

quantile(d3$diff, c(.025,.975))

2.5% 97.5Y%
-2.6339752 -0.3483025

mean (d3$diff > 0)

[1] 0.00591
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Comparing two means Three or more means

Three or more means

Now, let's consider the more general problem of

ind

2
Yg,i ~ N()ug’o-g)
forg=1,2,...,Gand i =1,...,n, and you are interested in the relationship amongst the 1.

We can perform the following statistical procedures:
@ Frequentist:

o p-value for test of Hy : g = p for all g,
o confidence interval for 11, — g,
@ Bayesian: based on posterior for p1,..., ug
o credible interval for pg — g
e posterior model probability, e.g. p(Hply), and
o probability statements, e.g. P(ug < pg|y)

where g and ¢’ are two different groups.
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Comparing two means Three or more means

Data example

Suppose you have three manufacturing processes to produce sensors and you are interested in
the average sensitivity of the sensors.

So you run the three processes and record the sensitivity of each sensor in units of mV/V/mm
Hg (http://www.ni.com/white-paper/14860/en/). And you have the following summary
statistics:

# A tibble: 3 x 4

process n mean sd
<chr> <int> <dbl> <dbl>
1P1 22 7.74 1.87
2 P2 34 9.24 2.26
3 P3 7 10.8 1.96
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Comparing two means Three or more means

p-values

When there are lots of means, the first null hypothesis is typically

Ho:pg=pvg

oneway.test(sensitivity ~ process, data = d)

One-way analysis of means (not assuming equal variances)

data: sensitivity and process
F = 7.6287, num df = 2.000, denom df = 17.418, p-value = 0.004174
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Comparing two means Three or more means

Pairwise differences

Then we typically look at pairwise differences:

pairwise.t.test(d$sensitivity,

d$process,
pool.sd = FALSE,
p.adjust.method = "none"

Pairwise comparisons using t tests with non-pooled SD
data: d$sensitivity and d$process
P1 B2)
P2 0.0096 -
P3 0.0045 0.0870

P value adjustment method: none
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Comparing two means Three or more means

Posteriors for p

When .
Yoi ™ Ny, 02),
we have nd
in _ 2
'u’9|y ~ t”g_l(ygﬂ Sg/ng)

and that a draw for 4 can be obtained by taking

_ ind
Yy + Tngflsg/\/ Ng, Tngfl % tngfl(oa 1)

(STAT587@ISU) 109 - Comparing means
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Comparing two means Three or more means

Compare posteriors
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(@TNTELNI-RNGEENEMN  Three or more means

Credible intervals for differences

Use the simulations to calculate posterior probabilities and credible intervals for differences.

sims %>%
spread(process, mu) %>%
mutate ("mul-mu2° = P1-P2,
“mul-mu3” = P1-P3,
“mu2-mu3” = P2-P3) %>%
select ("mul-mu2”, mul-mu3”, mu2-mu3”) %>%
gather (comparison, diff) %>%
group_by (comparison) %>%
summarize (probability = mean(diff>0) %> round(4),
lower = quantile(diff, .025) %>% round(2),
upper = quantile(diff, .975) %>% round(2)) %>%
mutate(credible_interval = paste("(",lower,",",upper,")", sep="")) %>%
select (comparison, probability, credible_interval)

# A tibble: 3 x 3
comparison probability credible_interval
<chr> <dbl> <chr>

1 mui-mu2 0.0059 (-2.63,-0.35)

2 mul-mu3 0.0037 (-5.06,-1.11)

3 mu2-mu3 0.0493 (-3.56,0.37)
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Comparing two means Common variance

Common variance model

In the model o
ngi ~ N(Mmas)

we can calculate a p-value for the following null hypothesis:

Ho:0y=0 forall g

bartlett.test(sensitivity ~ process, data = d)

Bartlett test of homogeneity of variances

data: sensitivity by process
Bartlett's K-squared = 0.90949, df = 2, p-value = 0.6346

This may give us reason to proceed as if the variances is the same
in all groups, i.e.
ind
Yg’i N N(/“L97 02)'
This assumption is common when the number of observations in
the groups is small.
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Comparing two means Common variance

Comparing means when the variances are equal

. ind
Assuming Y, ; ~ N(ug4,0?), we can test
Hoy:pg=pvg
oneway.test(sensitivity ~ process, data = d, var.equal = TRUE)

One-way analysis of means

data: sensitivity and process

F = 6.7543, num df = 2, denom df = 60, p-value = 0.002261

Then we typically look at pairwise differences,
ie. Ho:pg = pg.

pairwise.t.test(d$sensitivity, d$process, p.adjust.method = "none"

Pairwise comparisons using t tests with pooled SD
data: d$sensitivity and d$process

P1 P2
P2 0.0116 —
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Comparing two means Common variance

Posteriors for p

ind

If Yy '~ N(ug,0?) and we use the prior p(u1, ..., puag,0%) o 1/0?, then

G ng

ind n—G 1 B
pgly, o '~ N(yg,az/ng) o*ly ~ IG 2 ’§Zz(ygvi_y9)2
g=1i=1
where n = Zle ng. and thus, we obtain joint samples for 1 by performing the following

L o™ ~ p(o?|y)
2. Forg=1,...,G, py4 Np(,ug]y,JQ(m)).
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Comparing two means Common variance

Compare posteriors
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Comparing two means Common variance

Credible interval for the differences

To compare the means, we compare the samples drawn from the posterior.

sims %>%

**

(RN

mutate("mul-mu2° = mul-mu2,
"mul-mu3” = mul-mu3,
“mu2-mu3” = mu2-mu3) %>%
select (Cmul-mu2°, mul-mu3”, mu2-mu3”) %>%
gather (comparison, diff) %>%
group_by (comparison) %>%
summarize (probability = mean(diff>0) %> round(4),

lower = quantile(diff, .025) %>% round(2),
upper = quantile(diff, .975) %>% round(2)) %>%

mutate(credible_interval = paste("(",lower,",",upper,")", sep="")) %>%

select (comparison, probability, credible_interval)

A tibble: 3 x 3
comparison probability credible_interval

<chr> <dbl> <chr>

mul-mu2 0.0059 (-2.65,-0.35)
mul-mu3 0.0007 (-4.92,-1.26)
mu2-mu3 0.036 (-3.34,0.15)
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Comparing two means Summary

Summary

Multiple (independent) normal means
@ p-values
@ confidence intervals
@ posterior densities
@ credible intervals
°

posterior probabilities
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Multiple Comparisons

Mice diet effect on lifetimes

Female mice were randomly assigned to six treatment groups to investigate
whether restricting dietary intake increases life expectancy. Diet treatments were:

@ NP - mice ate unlimited amount of nonpurified, standard diet

@ N/N85 - mice fed normally before and after weaning. After weaning, ration
was controlled at 85 kcal /wk

@ N/R50 - normal diet before weaning and reduced calorie diet (50 kcal /wk)
after weaning

@ R/R50 - reduced calorie diet of 50 kcal/wk both before and after weaning

@ N/R50 lopro - normal diet before weaning, restricted diet (50 kcal/wk) after
weaning and dietary protein content decreased with advancing age

@ N/R40 - normal diet before weaning and reduced diet (40 Kcal/wk) after
weaning.
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ultiple Comparisons

Exploratory analysis

library("Sleuth3")

summary (case0501)
Lifetime Di
Min. : 6.4 N/N85:
1st Qu.:31.8 N/R40:
Median :39.5 N/R50
Mean :38.8 NP
3rd Qu.:46.9 R/R50
Max. :54.6 lopro

et

:49
:56
:56

case0501 <- case0501 %>%

mutate(Diet = factor(Diet, c("NP","N/N85","N/RS0","R/R50","lopro","N/R40")),
recode(Diet, lopro
case0501 %>} group_by(Diet) %>} summarize(n=n(), mean = mean(Lifetime), sd

Diet =

# A tibble: 6 x 4

Diet n mean

<fct> <int> <dbl>
1 NP 49 27.4
2 N/N85 57 32.7
3 N/R50 71 42.3
4 R/R50 56 42.9
5 N/R50 lopro 56 39.7
6 N/R40 60 45.1

sd

<dbl>

6.

5
7
6.
6
6

"N/R50 lopro"))
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Multiple Comparisons

ggplot (case0501, aes(x=Diet, y=Lifetime)) +
geom_jitter(width=0.2, height=0) +
geom_boxplot (fill=NA, color='blue', outlier.color = NA) +
coord_flip() +

theme_bw ()
L] (] )
N/R40 p . - .h‘.h )
® o o ® o e
N/R50 lopro 1 B e S o ~!., I8
° SO A" . P
R/R501 e e L1 "'0*‘
Q
2

N/R50 1 o B 2 .'-‘:#“E
NP o ° . : . .,‘ ) 3:%‘

10 20 30 40 50
Lifetime
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Multiple Comparisons

Are the data compatible with a common mean?

Let Y;; represent the lifetime of mouse j in diet 7 for i =1,...,1 and
Jj=1,...,n; Assume Y;; ind N (ui,0?) and calculate a pvalue for
Ho : p; = p for all 4.

bartlett.test(Lifetime ~ Diet, data = case0501)

Bartlett test of homogeneity of variances

data: Lifetime by Diet
Bartlett's K-squared = 10.996, df = 5, p-value = 0.05146

oneway.test(Lifetime ~ Diet, data = case0501, var.equal = TRUE)

One-way analysis of means

data: Lifetime and Diet
F = 57.104, num df = 5, denom df = 343, p-value < 2.2e-16

oneway.test(Lifetime ~ Diet, data = case0501, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: Lifetime and Diet
F = 64.726, num df = 5.00, denom df = 157.84, p-value < 2.2e-16

\T587@ISU) 110 - Multiple comparisons October 4, 2021

5/17



(NI EEI  Statistical testing errors

Statistical testing errors

Definition
A type | error occurs when a true null hypothesis is rejected.

Definition
A type Il error occurs when a false null hypothesis is not rejected. Power is
one minus the type Il error probability.

We set our significance level a to control the type | error probability. If we
set a = 0.05, then we will incorrectly reject a true null hypothesis 5% of
the time.
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(NI EEI  Statistical testing errors

Statistical testing errors

Truth
Decision Hy true H false
Hj not true | Type | error  Correct (power)
Hy true Correct Type Il error

Definition
The familywise error rate is the probability of rejecting at least one true
null hypothesis.
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(NG EEC I Statistical testing errors

Type | error for all pairwise comparisons of J groups

How many combinations when choosing 2 items out of J7

(2) = 22y

If J =6, then there are 15 different comparison of means. If we set
a = 0.05 as our significance level, then individually each test will only
incorrectly reject 5% of the time.

If we have 15 tests and use a = 0.05, what is the familywise error rate?

1—(1-0.05)%=1-(0.95)" =1-0.46 = 0.54

So there is a greater than 50% probability of falsely rejecting at least one
true null hypothesis!

(STAT587@ISU) 110 - Multiple comparisons October 4, 2021 8/17



Bonferroni correction
Bonferroni correction

Definition
If we do m tests and want the familywise error rate to be a, the

Bonferroni correction uses a/m for each individual test. The familywise
error rate, for independent tests, is 1 — (1 — a/m)™.

Bonferroni familywise error rate

Q
s <«
= o
s o
g n — alpha=0.05
o 8 | - - alpha=0.01
é o
= S
£ 8

o T T T T

5 10 15 20

Number of tests
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Pairwise comparisons

If we want to consider all pairwise comparisons of the average lifetimes on
the 6 diets, we have 15 tests. In order to maintain a familywise error rate
of 0.05, we need a significance level of 0.05/15 = 0.0033333.

pairwise.t.test(case0501$Lifetime, case0501$Diet, p.adjust.method = "none"

Pairwise comparisons using t tests with pooled SD

data: case0501$Lifetime and case0501$Diet

N N/N85  N/RBO R/R50 N/R50 lopro
N/N85 5.9e-05 - - - -
N/R50 < 2e-16 1.1e-14 - = =
R/R50 < 2e-16 8.9e-15 0.622 - =
N/R50 lopro < 2e-16 5.2e¢-08 0.029 0.012 -
N/R40 < 2e-16 < 2e-16 0.017 0.073 1.6e-05

P value adjustment method: none
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Multiple Comparisons Bonferroni correction

Pairwise comparisons

If we want to consider all pairwise comparisons of the average lifetimes on
the 6 diets, we have 15 tests. Alternatively, you can let R do the adjusting
for you, but now you need to compare with the original significance level a.

pairwise.t.test(case0501$Lifetime, case0501$Diet, p.adjust.method = "bonferroni")

Pairwise comparisons using t tests with pooled SD

data: case0501$Lifetime and case0501$Diet

N
N/N85 0
N/R50 <
R/R50 <
N/R50 lopro <
N/R40 <

N/N85  N/R50
.00089 - -
2e-16 1.6e-13 -
2e-16 1.3e-13 1.00000
2e-16 7.9e-07 0.44018
2e-16 < 2e-16 0.24881

R/R50  N/R50 lopro

0
1

P value adjustment method: bonferroni

(STAT587@ISU)

.17507 -
.00000 0.00024
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Multiple Comparisons Bonferroni correction

Comments on the Bonferroni correction

The Bonferroni correction can be used in any situation. In particular, it
can be used on unadjusted pvalues reported in an article that has many

tests by comparing their pvalues to a/m where m is the number of tests
they perform.

The Bonferroni correction is (in general) the most conservative multiple
comparison adjustment, i.e. it will lead to the least null hypothesis
rejections.
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Multiple Comparisons Constructing multiple confidence intervals

Constructing multiple confidence intervals

A 100(1 — a)% confidence interval should contain the true value
100(1 — @)% of the time when used with different data sets.

An error occurs if the confidence interval does not contain the true value.

Just like the Type | error and familywise error rate, we can ask what is the
probability at least one confidence interval does not cover the true value.

The procedures we will talk about for confidence intervals have equivalent

approaches for hypothesis testing (pvalues). Within these procedures we
still have the equivalence between pvalues and Cls.
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Multiple Comparisons Constructing multiple confidence intervals

Constructing multiple confidence intervals

Confidence interval for the difference between group j and group j':

?j—?j/iMsp nf—i-
J

1

nj/

where M is a multiplier that depends on the adjustment procedure:

Tukey-Kramer
Scheffé
Bonferroni

QJ,n—J(l - a)/\/E

VI -1D)F -1 -n1—a)
tn—g(1—(a/m)/2)

Procedure M Use
LSD tnog(1—a/2) After significant F-test
(no adjustment)
Dunnett multivariate ¢ Compare all groups to control

All pairwise comparisons
All contrasts

m tests

(most generic)

(STAT587@ISU)
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ultiple Comparisons Constructing multiple confidence intervals

Tukey for all pairwise comparisons

TukeyHSD(aov(Lifetime ~ Diet, data = case0501))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Lifetime ~ Diet, data = case0501)

$Diet

diff lur upr p adj
N/N85-NP 5.2891873 1.5606269 9.0177476 0.0008380
N/R50-NP 14.8951423 11.3405719 18.4497127 0.0000000
R/R50-NP 15.4836735 11.7397556 19.2275913 0.0000000
N/R50 lopro-NP 12.2836735 8.5397556 16.0275913 0.0000000
N/R40-NP 17.7146259 14.0294069 21.3998448 0.0000000
N/R50-N/N85 9.6059550 6.2021702 13.0097399 0.0000000
R/R50-N/N85 10.1944862 6.5934168 13.7955556 0.0000000
N/R50 lopro-N/N85 6.9944862 3.3934168 10.5955556 0.0000008
N/R40-N/N85 12.4254386 8.8854359 15.9654413 0.0000000
R/R50-N/R50 0.5885312 -2.8320696 4.0091319 0.9963976
N/R50 lopro-N/R50 -2.6114688 -6.0320696 0.8091319 0.2460200
N/R40-N/R50 2.8194836 -0.5367684 6.1757356 0.1564608
N/R50 lopro-R/R50 -3.2000000 -6.8169683 0.4169683 0.1167873
N/R40-R/R50 2.2309524 -1.3252222 5.7871269 0.4684413
N/R40-N/R50 lopro 5.4309524 1.8747778 8.9871269 0.0002306
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Multiple Comparisons Constructing multiple confidence intervals

False Discovery Rate

Not wanting to make a single mistake is pretty conservative.

In high-throughput fields a more common multiple comparison adjustment
is false discovery rate.

Definition
False discovery rate procedures try to control the expected proportion of
incorrectly rejected null hypotheses.
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Multiple Comparisons Summary

How to incorporate multiple comparison adjustments

1. Determine what tests are going to be run (before looking at the data)
or what confidence intervals are going to be constructed.

2. Determine which multiple comparison adjustment is the most
relevant.

3. Use/state that adjustment and interpret your results.
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