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Simple linear regression Telomere length

Telomere length

http://www.pnas.org/content/101/49/17312
People who are stressed over long periods tend to look
haggard, and it is commonly thought that psycholog-
ical stress leads to premature aging [as measured by
decreased telomere length]

examine the importance of ... caregiving stress (...num-
ber of years since a child’s diagnosis [of a chronic dis-
ease]) [on telomere length]

Telomere length values were measured from DNA by a
quantitative PCR assay that determines the relative ra-
tio of telomere repeat copy number to single-copy gene
copy number (T/S ratio) in experimental samples as
compared with a reference DNA sample.

(STAT587@ISU) RO1 - Simple linear regression March 30, 2021 2/20


http://www.pnas.org/content/101/49/17312

Simple linear regression Telomere length

Telomere length vs years post diagnosis
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Simple linear regression Telomere length

Data with regression line

Telomere length vs years post diagnosis
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Simple linear regression Model

Simple Linear Regression

The simple linear regression model is

ind

Y "% N (Bo + B1X4,0%)

where Y; and X; are the response and explanatory variable, respectively, for individual .

Terminology (all of these are equivalent):

response explanatory
outcome covariate
dependent  independent
endogenous exogenous
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Simple linear regression Model

Simple linear regression - visualized

Simple linear regression model

Response variable

Explanatory variable
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Simple linear regression Parameter interpretation

Parameter interpretation

Recall:
EY;|X; = 2] = Bo + Bz Var|lV;| X; = 2] = o2

@ If X; =0, then E[Y;‘X,L = 0] = fo.

Bo is the expected response when the explanatory
variable is zero.

@ If X; increases from = to xz + 1, then
ElY|X; =2 +1] = o+ frz+ b
—EYilXi=ax | =po+bfiz
= B

[ is the expected increase in the response for each unit
increase in the explanatory variable.

@ o is the standard deviation of the response for a fixed
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Simple linear regression Parameter interpretation

Simple linear regression - visualized

Simple linear regression model

Response variable
S
.

0 2 4 6 8
Explanatory variable
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Remove the mean: »
Yi=fo+BiXi+e e~ N(0,0%)

So the error is

— (Bo + 1 X5)
which we approximate by the residual

ri =é =Y — (Bo + f1.Xy)
The least squares (minimize Y7, 7?), maximum likelihood, and Bayesian estimators (prior 1/0?) are
B =SXY/SXX

Bo =Y -HX
62 =SSE/(n—2) df =n—2

X =YX
Y =YL Y
SXY =Y (Xi-X)(Yi-T)
SXX =3, (X~ K)(X: - X) = XL, (X, - X

-3

SSE = r?
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Parameter estimation
Residuals

Telomere length vs years post diagnosis
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Parameter estimation
Residuals

Telomere length vs years post diagnosis

1.6+
1.4
£
j=2)
c
<
o
g 121
o
" '[
1.0
T T T T T
2.5 5.0 7.5 10.0 12.5
Years since diagnosis (jittered)
587@ISU) RO1 - Simple linear regression

March 30, 2021 11/20



Simple linear regression Standard errors

How certain are we about Bo and 51?

We quantify this uncertainty using their standard errors (or
posterior scale parameters):

(V)

SYY

Xy
R2
SST

= SXX/(n—1)

=8YY/(n—

1)

- Z?:l(yi - ?)2

SXY/(n—1)
SX Sy

n

2. 2 SST—SSE
XY ™ SST

(Y —

2

df =n—2
df =n—2

correlation coefficient
coefficient of determination

The coefficient of determination (R?) is the proportion of
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Simple linear regression Standard errors

Default Bayesian analysis of the simple linear regression model

If we assume the default prior p(3o, B1,0%) o< 1/02, then the marginal posteriors for the mean
parameters are

/ley ~ tn—2(5j7 SE(BJ)Q)
We can construct a 100(1 — a)% two-sided credible interval for 3; via
B+ tn72,17a/25E(Bj)

where P(T,,_2 <tn_91_q/2) =1—a/2for T, o ~t, o.

We can compute posterior probabilities via

P(B; < bily) =P (T2 < £235)
3, —b;
P(3; > bily) =P (Tuma > 2525

(STAT5870ISU)

RO1 - Simple linear regression March 30, 2021 13 /20



T ] G TR
p-values and confidence interval

We can construct a 100(1 — a)% two-sided confidence interval for 3; via
Bj + tn—2,1—a/QSE(Bj)-

We can compute one-sided p-values,
eg. Hot,Bj Zb] 'S HAZﬂj <bj has

p-value=P | T,,_o > L_Ab]
SE(B;)
andHolﬁjgijSHA25j>bj has
p-value=P | T, 2 < L_PJ
SE(B))

software default is usually b; = 0.
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e
Calculations “by hand” in R

=]
1

nrow(Telomeres)
Xbar = mean(Telomeres$years)
Ybar = mean(Telomeres$telomere.length)
= sd(Telomeres$years)
_Y = sd(Telomeres$telomere.length)
r_XY = cor(Telomeres$telomere.length, Telomeres$years)

n 0
<
o

SXX = (n-1)*s_X"2
SYY = (n-1)*s_Y"2
SXY = (n-1)*s_X*s_Y*r_XY

betal = SXY/SXX
beta0 = Ybar - betal * Xbar

R2 = r_Xy-2
SSE = SYY*(1-R2)

sigma2 = SSE/(n-2)
sigma = sqrt(sigma2)

SE_betal = sigma*sqrt(1/n + Xbar~2/((n-1)*s_X"2))
SE_betal = sigma*sqrt( 1/((n-1)*s_X"2))
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by hand
Calculations "by hand” in R (continued)

betal + c(-1,1)*qt(.975, df = n-2) * SE_betal

[1] 1.251761 1.483603

betal + c(-1,1)*qt(.975, df = n-2) * SE_betal

[1] -0.044785794 -0.007962836

pt(beta0/SE_betal, df = n-2)

[1] 1

pt(betal/SE_betal, df = n-2)

[1] 0.003102353
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e
Calculations by hand

SE(B1)

PH 4:80#0

PH 4:81#0
Clgsy g,

Clgs% g,

5870ISU)

= (n—1)s2 = (39 — 1) x 2.93542742 = 327.4358974

= (n—1)s% = (39 — 1) x 0.1797731% = 1.2280974

=(n—1sxsyrxy = (39 — 1) X 2.9354274 x 0.1797731 X —0.4306534 = —8.6358974
= SXY/SXX = —8.6358974/327.4358974 = —0.0263743

=Y — 81X = 1.2202564 — (—0.0263743) X 5.5897436 = 1.3676821

=r%y = (—0.4306534)% = 0.1854624

= SYY(1 — R?) = 1.2280974(1 — 0.1854624) = 1.0003316

= SSE/(n — 2) = 1.0003316/(39 — 2) = 0.027036

=52 =0 027036 = 0.1644262

_ 1 1 5.58974362 _
=6,/2+ (n71> 7 = 0.1644262, [ 55 + o SR iy = 0.0572111
_ 5 [ / 1 _

=4 (n—l) 2 = 0.1644262 (39-1)+2.03542742 — 0.0090867

=2P (Tp_2 < — #%O) = 2P(t37 < —23.9058799) = 4.2740348 x 10~ 24
=2P (Th_o < — m = 2P(tg7 < —2.9025065) = 0.0062047

= B0+t tn_21-a/25E(B0)

= 1.3676821 + 2.0261925 x 0.0572111 = (1.2517613, 1.4836028)
=B1tt, 21_a/25E(B1)

= —0.0263743 £ 2.0261925 X 0.0090867 = (—0.0447858, —0.0079628)
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Simple linear regression in R

Regression in R

m = Im(telomere.length ~ years, Telomeres)
summary (m)

Call:
Im(formula = telomere.length ~ years, data = Telomeres)

Residuals:
Min 1Q Median 3Q Max
-0.42218 -0.08537 0.02056 0.10738 0.28869

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.367682 0.057211 23.906 <2e-16 **x*
years -0.026374 0.009087 -2.903 0.0062 **

Signif. codes: 0 '**x' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1644 on 37 degrees of freedom

Multiple R-squared: 0.1855,Adjusted R-squared: 0.1634
F-statistic: 8.425 on 1 and 37 DF, p-value: 0.006205

confint (m)

2.5 % 97.5 %
(Intercept) 1.25176134 1.483602799
years -0.04478579 -0.007962836
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Simple linear regression Conclusion

Conclusion

Telomere ratio at the time of diagnosis of a child’s chronic illness is estimated to be 1.37 with
a 95% credible interval of (1.25, 1.48). For each year since diagnosis, the telomere ratio
decreases on average by 0.026 with a 95% credible interval of (0.008, 0.045) . The proportion

of variability in telomere length described by a linear regression on years since diagnosis is
18.5%.

http://www.pnas.org/content/101/49/17312
The correlation between chronicity of caregiv-
ing and mean telomere length is —0.445 (P
<0.01). [R* = 0.198 was shown in the plot.]

Remark |'m guessing our analysis and that reported in the paper don't match exactly due to a
discrepancy in the data.
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Simple linear regression Summary

Summary

@ The simple linear regression model is

ind

Y; "N (Bo + B1Xi,07)
where Y; and X are the response and explanatory variable, respectively, for individual i.

@ Know how to use R to obtain 3y, 31, 62, R2, p-values, Cls, etc.

@ Interpret regression output:

@ [3p is the expected value for the response when the
explanatory variable is 0.

@ [31 is the expected increase in the response for each unit
increase in the explanatory variable.

@ o is the standard deviation of responses around their mean.

@ R? is the proportion of the total variation of the response
variable explained by the model.
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Choosing explanatory variables

Simple linear regression

Let i
Y "% N(Bo + Bif(Xi), o?).

Possible choices for f:

e quadratic: f(z) = 22
o logarithmic: f(z) = log(x)
e centered: f(z) =z —m

e scaled: f(z) ==z/s
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Choosing explanatory variables Quadratic relationship

Quadratic relationship
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Choosing explanatory variables Logarithmic relationship

Logarithmic relationship
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S A
Shifting the intercept

The intercept is the expected response when the explanatory variable is zero. If we use
f(z) =z —m,
then the new intercept is the expected response when the explanatory variable is m.
E[Y|X =] = o + Bi(z —m) = fo + bz

so our new parameters for the mean are
e slope 51 = 3 (unchanged) but
e intercept By = (Bo — mpy).

(STAT587@ISU) RO1a - Simple linear regression: March 30, 2021 5/11



Shifting the intercept
Telomere data

telomere.length

telomere.length

25 5.0 7.5 10.0 128
years
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oosing explanatory variables Shifting the intercept

Telomere data: shifting the intercept

m0 = lm(telomere.length ~ years , abd::Telomeres)

m4 = lm(telomere.length ~ I(years-5), abd::Telomeres)

coef (m0)

(Intercept) years
1.36768207 -0.02637431

coef (m4)

(Intercept) I(years - 5)
1.23581049 -0.02637431

confint (m0)

2.5 % 97.5 %
(Intercept) 1.25176134 1.483602799
years -0.04478579 -0.007962836
confint (m4)

2.5 % 97.5 %

(Intercept) 1.18136856 1.290252429
I(years - 5) -0.04478579 -0.007962836
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Choosing explanatory variables Rescaling the slope

Rescaling the slope

The slope is the expected increase in the response when the explanatory variable increases by
1. If we use

f(z) = /s,

then the new slope is the expected increase in the response when the explanatory variable
increases by s.

E[Y|X =] = B + Bi(z/s) = Bo + fix

SO our new parameters are
e intercept By = fy (unchanged) but
e slope 51 = f1/s.
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Choosing explanatory variables Rescaling the slope

Telomere data: rescaling the slope

telomere.length

years/2

telomere.length

25 5.0 7.5 10.0 128
years
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oosing explanatory variables Rescaling the slope

Telomere data: rescaling the slope

m0 = lm(telomere.length ~ years , abd::Telomeres)
m4 = lm(telomere.length ~ I(years/2), abd::Telomeres)

coef (m0)

(Intercept) years
1.36768207 -0.02637431

coef (m4)

(Intercept) I(years/2)
1.36768207 -0.05274863

confint (m0)

2.5 % 97.5 %
(Intercept) 1.25176134 1.483602799
years -0.04478579 -0.007962836
confint (m4)

2.5 % 97.5 %

(Intercept) 1.25176134 1.48360280
I(years/2) -0.08957159 -0.01592567
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Choosing explanatory variables Summary

Summary

Let
Yi N (By + B1f(X), 0?).
Choose f based on
@ Scientific understanding
@ Interpretability

@ Diagnostics
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Uncertainty intervals Uncertainty when explanatory variable is zero

Uncertainty when explanatory variable is zero

Let o
}/; lﬁ“ N(BO + BlXi70-2)7
then
ElY;|X; =0] = Bo

and a 100(1 — a)% credible/confidence interval is

. 1 72
Bo ttp 21 apd\/—+—F3-
n  (n—1)s2
RO1b - Simple linear regression March 30, 2021



Uncertainty intervals Uncertainty when explanatory variable is zero

Telomere data: uncertainty

Telomere length vs years post diagnosis
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Uncertainty intervals Uncertainty when explanatory variable is x

Uncertainty when explanatory variable is

Let o

}/; lﬁ“ N(BO + BlXi70-2)7
then

BlY|X; = z] = Bo + p1

and a 100(1 — a)% credible/confidence interval is

. 1 (T—a)?
Bo+ b1z £ty 21020\ -+ 7 —~ 5
n (n—1)s2
RO1b - Simple linear regression March 30, 2021



Uncertainty intervals Uncertainty when explanatory variable is x

Telomere data: uncertainty

Telomere length vs years post diagnosis
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Uncertainty intervals Prediction intervals

Prediction intervals

Let o

}/; lﬁ“ N(BO + BlXi70-2)7
then

BlY|X; = z] = Bo + p1

and a 100(1 — a)% prediction interval is

(7 —z)?

R A R 1
Bo+ Brx £tn_91-a/2 0’\/1 tot CEDEE
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Uncertainty intervals Prediction intervals

Telomere data: prediction intervals

Telomere length vs years post diagnosis

Telomere length
5
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Uncertainty intervals ISIUIIEI%

Summary

Two main types of uncertainty intervals:

@ where is the line?

A 1 (z—x)?
+ty—21-a/20 -t —
Bo+ 1 £ty_21-q/20 -t n—1)s2
@ where will a new data point fall?
A 1 (T—x)?
+t, 91_agp0/l+—+ ———
Bo+Brr £ty _o1-a/20/1+ ot n—1)s2

Both intervals are confidence and credible intervals.
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All models are wrong!

George Box (Empirical Model-Building and Response Surfaces, 1987):

All models are wrong, but some are useful.

http://stats.stackexchange.com/questions/57407/what-is-the-meaning-of-all-models-are-wrong-but-some-are-useful

“All models are wrong” that is, every model is wrong be-
cause it is a simplification of reality. Some models, especially
in the "hard” sciences, are only a little wrong. They ignore
things like friction or the gravitational effect of tiny bodies.
Other models are a lot wrong - they ignore bigger things.

“But some are useful” - simplifications of reality can be
quite useful. They can help us explain, predict and under-
stand the universe and all its various components.

This isn't just true in statistics! Maps are a type of
model; they are wrong. But good maps are very useful.
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Simple Linear Regression

The simple linear regression model is

ind
Y "X N (Bo + B1Xi,0%)

this can be rewritten as i
Vi =00+ BiXi+e e~ N(0,0%).

Key assumptions are:
@ The errors are
e normally distributed,
e have constant variance, and
e are independent of each other.
@ There is a linear relationship between the expected

response and the explanatory variables.
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Multiple Regression

The multiple regression model is

Yi=080+ 51 X1+ +6pXip+e e %IN(O,U2)-

Key assumptions are:
@ The errors are
e normally distributed,
e have constant variance, and
e are independent of each other.
@ There is a specific relationship between the
expected response and the explanatory variables.

November 1, 2021 4/27
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Telomere data

Telomere length vs years post diagnosis
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Case statistics

Case statistics

To evaluate these assumptions, we will calculate a variety of case statistics:

o Leverage

o Fitted values
@ Residuals

e Standardized residuals
o Studentized residuals

@ Cook's distance
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Case statistics

Default diagnostic plots in R

Residuals vs Fitted Normal Q-Q
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e
Leverage

The leverage (0 < h; < 1) of an observation 7 is a measure of how far away that observation’s

explanatory variable value is from the other observations. Larger leverage indicates a larger
potential influence of a single observation on the regression model.

In simple linear regression,

1 (T—.ﬁi)Q

hi =
n (n—1)s%

which is involved in the standard error for the line for a

location x;.

The variability in the residuals is a function of the
leverage, i.e.
Var[r;] = o*(1 — hy)
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Case statistics Leverage

Telomere data

8
7
6
5
4
3
2
1
1

OCO0OO0OO0OO0O0O0O0O0O0O0 O

leverage

.15113547
.08504307
.06115897
.04338293
.03171496
.02615505
.02670321
.03335944
.04612373
.06499608
.08997651
.08997651
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Case statistics Residuals

Residuals and Fitted values

A regression model can be expressed as

ind
Y; e N(/M’a 02) and M = BO + BlXi

A fitted value Y; for an observation i is
Vi = fii = Bo + b1 X;

and the residual is

I
=
|
=~

T
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Standardized residuals
Standardized residuals

Often we will standardize residuals, i.e.

r; . T
V/CLT\[TZ] v 1—h;

If |r;] is large, it will have a large impact on
62 =" r?/(n—2). Thus, we can calculate an
externally studentized residual

r;
5’(2) 1—h;
where 62y =37, 1% /(n — 3).

Both of these residuals can be compared to a standard
normal distribution.
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(2l Standardized residuals

Telomere data: residuals
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Case statistics Cook’s distance

Cook’s distance

The Cook's distance for an observation i (d; > 0) is a measure of how much the regression
parameter estimates change when that observation is included versus when it is excluded.

Operationally, we might be concerned when d; is
@ larger than 1 or

o larger then 4/n.
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Default regression diagnostics in R Residuals vs fitted values

Residuals vs fitted values

Residuals vs Fitted
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Default regression diagnostics in R QQ-plot
QQ-plot
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Default regression diagnostics in R Absolute standardized residuals vs fitted values

Absolute standardized residuals vs fitted values
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Default regression diagnostics in R Cook’s distance

Cook’s distance

Cook's distance
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Default regression diagnostics in R Residuals vs leverage

Residuals vs leverage

Residuals vs Leverage
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Default regression diagnostics in R Cook'’s distance vs leverage

Cooks' distance vs leverage

Cook's dist vs Leverage h;/(1-h;)
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AT e
Additional plots

Default plots do not assess all model assumptions.

Two additional suggested plots:
@ Residuals vs row number

@ Residuals vs (each) explanatory variable
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D EV HEEIEESINNCIELAIS RN Plot residuals vs row number (index)

Plot residuals vs row number (index)

plot(residuals(m))
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Default regression diagnostics in R Residual vs explanatory variable

Residual vs explanatory variable

plot(Telomeres$years, residuals(m))
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ggResidpancl: R
ggResidpanel: R default

resid_panel(m, plots = "R")

( 5870ISU)
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ggResidpanel: R all plots
ggResidpanel: R all plots

resid_panel(m, plots

Sample Quantiles

Standardized Residuals
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e Rkl
ggResidpanel: R explanatory

resid_xpanel (m)

Plots of Residuals vs Predictor Variables
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e
ggResidpanel: SAS

resid_panel(m, plots = "SAS")
Residual Plot Histogram
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Default regression diagnostics in R Summary

Summary

Case statistics:
o Fitted values

o Leverage
@ Residuals

o Standardized residuals
e Studentized residuals

@ Cook's distance

Model assumptions:

Normality

@ Constant variance
@ Independence
°

Linearity
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Logarithms Parameter intrepretation

Parameter interpretation in regression

If
EY|X] = po+ A1 X,
then

@ [y is the expected response when X is zero and

@ dp; is the expected change in the response for a d
unit change in the explanatory variable.

For the following discussion,

@ Y is always going to be the original response and

@ X is always going to be the original explanatory
variable.
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Logarithms Corn yield example

Corn yield example

Suppose
e Y is corn yield (bushels/acre)
e X is fertilizer level in Ibs/acre
Then, if
EY|X] = fo+ /X

@ [y is the expected corn yield (bushels/acre) when
fertilizer level is zero and

@ df; is the expected change in corn yield
(bushels/acre) when fertilizer is increased by d
Ibs/acre.
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Regression with logarithms

Regression models using logarithms
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Response is logged

If
Ellog(Y)|X] = Bo + p1X,

then we have
Median[V|X] = e+AX = gfochX

then
@ ¢ is the median of Y when X is zero

o %1 is the multiplicative change in the median of
Y for a d unit change in the explanatory variable.
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Response is logged

Let be Y is corn yield (bushels/acre) and X is fertilizer level in lbs/acre.
If we assume

Eflog(Y)|X] = fo + A1 X
then
Median[Y | X] = e X

@ ¢’ is the median corn yield (bushels/acre) when
fertilizer level is 0 and

@ e is the multiplicative change in median corn yield
(bushels/acre) when fertilizer is increased by d lbs/acre.
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el
Response is logged

negative slope positive slope
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Explanatory variable is logged

If
E[Y|X] = o + B log(X),

then,

@ () is the expected response when X is 1 and
e (1 log(d) is the expected change in the response
when X increases multiplicatively by d,e.g.
e [(1log(2) is the expected change in the response
for each doubling of X or
o [3110g(10) is the expected change in the response
for each ten-fold increase in X.
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Explanatory variable is logged

Suppose

e Y is corn yield (bushels/acre)
e X is fertilizer level in Ibs/acre
If

E[Y|X] = Bo + 51 log(X)
then

@ [y is the expected corn yield (bushels/acre) when
fertilizer amount is 1 Ib/acre and

@ [(1log(2) is the expected change in corn yield
when fertilizer amount is doubled.
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Explanatory variable is logged

negative slope positive slope
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Logarithms Both response and explanatory variable are logged

Both response and explanatory variable are logged

If
Ellog(Y)|X] = Bo + B1 log(X),
then
Median[Y|X] = e® X 51,
and thus

@ ¢ is the median of Y when X is 1 and

@ d? is the multiplicative change in the median of
the response when X increases multiplicatively by
d, e.g.

o 2%t is the multiplicative change in the median of
the response for each doubling of X or

e 107 is the multiplicative change in the median of
the response for each ten-fold increase in X.

(STAT587@ISU) RO3 - Regression: using logarithms March 30, 2021 11/23



Logarithms Both response and explanatory variable are logged

Both response and explanatory variables are logged

Suppose

e Y is corn yield (bushels/acre)
e X is fertilizer level in Ibs/acre
If

Ellog(Y)|X] = fo+ B1log(X) or Median[V|X] = efoef1loe(X) — ¢fo x B

then

o ¢ is the median corn yield (bushels/acre) at 1
Ib/acre of fertilizer and

e 271 is the multiplicative change in median corn
yield (bushels/acre) when fertilizer is doubled.

(STAT5870ISU)
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Logarithms Both response and explanatory variable are logged

Both response and explanatory variables are logged

negative slope positive slope
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Both response and explanatory variable are logaed
Why use logarithms

The most common transformation of either the response or explanatory variable(s) is to take
logarithms because

@ linearity will often then be approximately true,
@ the variance will likely be approximately constant,
@ influence of some observations may decrease, and

o there is a (relatively) convenient interpretation.
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Logarithms Both response and explanatory variable are logged

Summary of interpretations when using logarithms

@ When using the log of the response,

e [y determines the median response
e [3; determines the multiplicative change in the median response

@ When using the log of the explanatory variable (X),

e [y determines the response when X =1
e [31 determines the change in the response when there is a multiplicative increase in X
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Constructing credible intervals
Recall the model -

Y; X N(Bo + B1Xi,0%).
Let (L,U) be a 100(1 — a)% credible interval for (.

For ease of interpretation, it is often convenient to
calculate functions of 3, e.g.

f(B)y=ds and  f(B)=¢".

A 100(1 — a)% credible interval for f(3) (when f is
monotonic) is

(f(L), F(U)).
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Logarithms Breakdown times example

Breakdown times

In an industrial laboratory, under uniform conditions, batches of elec-
trical insulating fluid were subjected to constant voltages (kV) until
the insulating property of the fluids broke down. Seven different volt-
age levels were studied and the measured responses were the times
(minutes) until breakdown.

summary (Sleuth3: : case0802)

Time Voltage Group

Min. 8 0.090 Min. :26.00  Groupl: 3
1st Qu.: 1.617 1st Qu.:31.50 Group2: 5
Median : 6.9256 Median :34.00 Group3:11
Mean :  98.558 Mean :33.13 Group4:15
3rd Qu.: 38.383 3rd Qu.:36.00 Group5:19
Max. :2323.700 Max. :38.00 Group6:15
Group7: 8
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Logarithms Breakdown times example

Insulating fluid breakdown

Insulating fluid breakdown
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Logarithms Breakdown times example

Insulating fluid breakdown

Insulating fluid breakdown
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Logarithms Breakdown times example

Run the regression and look at diagnostics

Residual Plot Q-Q Plot
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Logarithms Breakdown times example

Logarithm of time (response)

Insulating fluid breakdown
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Logarithms Breakdown times example

Logarithm of time (response): residuals

Residual Plot Q-Q Plot
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Logarithms Breakdown times example

Summary

m <- Im(log(Time) ~ I(Voltage-30), Sleuth3::case0802)
exp(m$coefficients)

(Intercept) I(Voltage - 30)
41.86752 0.60208

exp(confint(m))

2.5 7 97.5 %
(Intercept) 25.2582342 69.3987157
I(Voltage - 30) 0.5370152 0.6750281

@ At 30 kV, the median breakdown time is estimated
to be 42 minutes with a 95% credible interval of
(25, 69).

@ Each 1 kV increase in voltage was associated with

a 40% (32%, 46%) reduction in median breakdown
time.
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Categorical explanatory variables Binary explanatory variable

Binary explanatory variable

Recall the simple linear regression model

ind
Y; ‘" N(Bo + f1Xi,07).

If we have a binary explanatory variable, i.e. the explanatory variable only has two levels say level A and
level B, we can code it as

X; = I(observation 7 is level A)

where I(statement) is an indicator function that is 1 when
statement is true and 0 otherwise. Then

e [ is the expected response for level B,
@ [y + B is the expected response for level A, and

@ [ is the expected difference in response
(level A minus level B).
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Categorical explanatory variables Binary explanatory variable

Mice lifetimes

Sleuth3::case0501
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Categorical explanatory variables Binary explanatory variable

Regression model for mice lifetimes

Let i
Y; " N(Bo + B1X;,07)
where Yj is the lifetime of the ith mouse and
then
E|[Lifetime|R/R50] ElY;|X; =01 = o
E|[Lifetime|N/R50] = E[Yi|X; =1] = 5o+ b1

and
E|[Lifetime difference]
— E|[Lifetime|N/R50] — E[Lifetime|R/R50]
= (Bo + B1) — Bo = B
G A CEY I R04 - Regression with Categorical Explanatory Variables March 30, 2021 4/17



Categorical explanatory variables Binary explanatory variable

case0501$X <- ifelse(case0501$Diet == "N/R50", 1, 0)
(m <- lm(Lifetime ~ X, data = case0501, subset = Diet %in} c("R/R50","N/R50")))

Call:
Im(formula = Lifetime ~ X, data = case0501, subset = Diet %in}
c("R/R50", "N/R50"))

Coefficients:
(Intercept) X
42.8857 -0.5885

confint (m)

2.5 % 97.5 %
(Intercept) 40.952257 44.819172

X -3.174405 1.997342
predict(m, data.frame(X=1), interval = "confidence")
fit lwr upr

1 42.29718 40.58007 44.0143
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Categorical explanatory variables Binary explanatory variable

Mice lifetimes
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Categorical explanatory variables Binary explanatory variable

Equivalence to a two-sample t-test

Recall that our two-sample t-test had the model

ind

YVij ~ N(/-Lj70-2)
for groups j = 0, 1. This is equivalent to our current regression model where

o = Bo
pr = Bo+ B

assuming
@ Lo represents the mean for the R/R50 group and
@ /17 represents the mean for N/R50 group.

When the models are effectively the same, but have
different parameters we the model is reparameterized.
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Categorical explanatory variables Binary explanatory variable

Equivalence
sumnary (m) $coefficients[2,4]
[1] 0.6531748

confint (m)

2.5 % 97.5 %
(Intercept) 40.952257 44.819172
X -3.174405 1.997342

t.test(Lifetime ~ Diet, data = case0501, subset = Diet %in} c("R/R50","N/R50"), var.equal=TRUE)

Two Sample t-test

data: Lifetime by Diet
t = -0.45044, df = 125, p-value = 0.6532
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-3.174405 1.997342
sample estimates:
mean in group N/R50 mean in group R/R50
42.29718 42.88571
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Categorical explanatory variables Many levels

Using a categorical variable as an explanatory variable.
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Categorical explanatory variables Many levels

Regression with a categorical variable

1. Choose one of the levels as the reference level, e.g.
N/N85

2. Construct dummy variables using indicator functions,
i.e.

1 Ais TRUE
14) _{ 0 Ais FALSE

for the other levels, e.g.

I(diet for observation i is N/R40)
I(diet for observation i is N/R50)
I(diet for observation i is NP)
(
(

I(diet for observation i is R/R50)
X, 5 = I(diet for observation i is lopro)

3. Estimate the parameters of a multiple regression model
using these dummy variables.
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Categorical explanatory variables Many levels

Regression model

Our regression model becomes

y; %! N(Bo+ B1Xin + BoXio+ B3 X3+ BaXia+ BsXis,0°)

where

e [y is the expected lifetime for the N/N85 group
@ By + 1 is the expected lifetime for the N/R40 group
@ So + B2 is the expected lifetime for the N/R50 group
@ [y + B3 is the expected lifetime for the NP group

@ [y + B4 is the expected lifetime for the R/R50 group
@ By + (5 is the expected lifetime for the lopro group

and thus 3, for p > 0 is the difference in expected lifetimes

between one group and a reference group.
(STAT587@ISU) R04 - Regression with Categorical Explanatory Variables March 30, 2021
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Many levels
R code

case0501 <- case0501 %>%

mutate(X1 = Diet "N/R40",
X2 = Diet "N/R50",
X3 = Diet "NP",
X4 = Diet "R/R50",
X5 = Diet == "lopro")

m <- Im(Lifetime ~ X1 + X2 + X3 + X4 + X5, data = case0501)
m

Call:
Im(formula = Lifetime ~ X1 + X2 + X3 + X4 + X5, data = case0501)

Coefficients:
(Intercept) X1TRUE X2TRUE X3TRUE X4TRUE X5TRUE
32.691 12.425 9.606 -5.289 10.194 6.994

confint (m)

2ol 97.5 %
(Intercept) 30.951394 34.431062
X1TRUE .995893 14.854984
X2TRUE .269897 11.942013
X3TRUE -7.848142 -2.730232
X4TRUE .723030 12.665943
X5TRUE 4.523030 .465943

~ ©
N

=
©
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Many level
R code (cont.)

summary (m)

Call:
Im(formula = Lifetime ~ X1 + X2 + X3 + X4 + X5, data = case0501)

Residuals:
Min 1Q Median 3Q Max
-25.5167 -3.3857 0.8143 5.1833 10.0143

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 32.6912 0.8846 36.958 < 2e-16 **x*
X1TRUE 12.4254 1.2352 10.059 < 2e-16 *xx*
X2TRUE 9.6060 1.1877 8.088 1.06e-14 *x¥x*
X3TRUE -5.2892 1.3010 -4.065 5.95e-05 *x¥x*
X4TRUE 10.1945 1.2565 8.113 8.88e-15 x*¥x*
X5TRUE 6.9945 1.2565 5.567 5.25e-08 x*x*
Signif. codes: O '"*¥*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.678 on 343 degrees of freedom
Multiple R-squared: 0.4543,Adjusted R-squared: 0.4463
F-statistic: 57.1 on 5 and 343 DF, p-value: < 2.2e-16
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Categorical explanatory variables Many levels

Interpretation

@ [y = E[Y;|reference level], i.e. expected response for the reference level
Note: the only way X; 1 =--- = X, = 0 is if all indicators are zero, i.e. at the reference level.

@ [(,,p > 0: expected change in the response moving from the reference level to the level associated
with the p!* dummy variable
Note: the only way for X; , to increase by one is if initially X; ; =--- = Xj; , = 0 and now
Xip=1

For example,

@ The expected lifetime for mice on the N/N85 diet is
32.7 (31.0,34.4) months.

@ The expected increase in lifetime for mice on the
N/R40 diet compared to the N/N85 diet is 12.4
(10.0,14.9) months.

@ The model explains 45% of the variability in mice
lifetimes.
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Categorical explanatory variables Many levels

Using a categorical variable as an explanatory variable.

501

Lifetime (months)
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Categorical explanatory variables Many levels

Equivalence to multiple group model

Recall that we had a multiple group model
Yy " N (. 0%)
for groups j =0,1,2,...,5.

Our regression model is a reparameterization of the multiple
group model:

N/N85: po = fo

N/R4O: p1 = PBo+ b
N/R50: ps = Bo+ P2
NP : ps = Bo+ B3
R/R50: py = fo+ fa
lopro: s = Bo+Bs

assuming the groups are labeled appropriately.
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Categorical explanatory variables Summary

Summary

1. Choose one of the levels as the reference level.

2. Construct dummy variables using indicator functions for all other levels, e.g.

X; = I(observation i is <some non-reference level>).

3. Estimate the parameters of a multiple regression model using these dummy variables.

(STAT587@ISU) R04 - Regression with Categorical Explanatory Variables March 30, 2021
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Multiple regression model

Multiple regression

Recall the simple linear regression model is

ind

Vi "™ N(pi, o), i = Bo+ f1Xi

The multiple regression model has mean

wi = Bo+ b1 X1+ -+ BpXip

where for observation %
@ Y; is the response and

o X;, is the p'" explanatory variable.
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Multiple regression model

Explanatory variables

There is a lot of flexibility in the mean

wi = Bo+ b1 X1+ -+ BpXip

as there are many possibilities for the explanatory variables X; 1,..., X;,:

Functions (f(X))

Dummy variables for categorical variables (X; = I())
Higher order terms (X?2)

Additional explanatory variables (X7, X5)
Interactions (X7 X5)

e Continuous-continuous
o Continuous-categorical
o Categorical-categorical

(STAT587@ISU) RO5 - Multiple Regression
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Multiple regression model Parameter interpretation

Parameter interpretation

Model:
ind

Y, ~ N(ﬁo + 61Xi,1 +--+ ,BpXi,pv 02)

The interpretation is

@ [y is the expected value of the response Y; when
all explanatory variables are zero.

@ 3y, p # 0 is the expected increase in the response
for a one-unit increase in the p”* explanatory
variable when all other explanatory variables are
held constant.

e R? is the proportion of the variability in the
response explained by the model
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Multiple regression model Parameter estimation and inference

Parameter estimation and inferece

Let
y=XB+e
where
o y=(y1,~«,yn)T
@ Xisn x pwith ithrow X; = (1, X;,1,...,X;,p)
® 5= (80,81, Bp)"
] e:(el,..A,en)T

Then we have

B =xTx)"'xTy
Var(8) =o2(X'x)"?!
r =y—XB
~2 — 1 T
7 =n—(pn" 7
Confidence/credible intervals and (two-sided) p-values are constructed using
Bj —bj

Bj + tn—(p+1),1—a/ZSE(Bj) and pvalue = 2P (Tn—(p+1) >

)

where T (5,4 1) ~ ty_(p41) and SE(BJ') is the jth diagonal element of &Z(XTX)fl.

SE(B;)
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Galileo experiment
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(IENERSESRIRWR Sl Higher order terms (X 2)

Galileo data (Sleuth3::casel001)
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Higher order terms (X?)
Higher order terms (X?)

Let

@ Y; be the distance for the i’ run of the experiment and
e H; be the height for the i*" run of the experiment.

Simple linear regression assumes
ind 2
Y; ~ N(Bo + 1 Hi ,07)
The quadratic multiple regression assumes
ind

Y “ N(Bo + B1H; + o H? ,0%)

The cubic multiple regression assumes

ind 2 2
Y; ‘& N(Bo + B1H; + BoH? + B3HY, 0%)

March 30, 2021
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el (6
R code and output

ml = lm(Distance ~ Height, case1001)
m2 = lm(Distance ~ Height + I(Height~2), case1001)
m3 = lm(Distance ~ Height + I(Height~2) + I(Height~3), casel001)

coefficients(m1)

(Intercept) Height
269.712458 0.333337

coefficients(m2)

(Intercept) Height  I(Height~2)
1.999128e+02 7.083225e-01 -3.436937e-04

coefficients(m3)

(Intercept) Height I(Height"2)  I(Height"3)
1.557756e+02 1.115298e+00 -1.244943e-03 5.477104e-07
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(IENERSESRIRWR Sl Higher order terms (X 2)

Galileo experiment (Sleuth3::case1001)
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Additional explanatery variables (X1 + X)
Longnose Dace Abundance

From http://udel.edu/~mcdonald/statmultreg.html:

| extracted some data from the Maryland Biological Stream Survey. ... The [response] variable is the number
of Longnose Dace ... per 75-meter section of [a] stream. The [explanatory] variables are ... the maximum
depth (in cm) of the 75-meter segment of stream; nitrate concentration (mg/liter) ....

Consider the model

Y; % N(Bo+ B1Xi1 + BaXio,0?)

where
@ Y;: count of Longnose Dace in stream 1
e X;1: maximum depth (in cm) of stream ¢

@ X;o: nitrate concentration (mg/liter) of stream i

(STAT5870ISU) RO5 - Multiple Regression March 30, 2021 11/37
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Multiple regression model Additional explanatory variables (X1 + X2)
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AT Gl s (S e 20
R code and output

m <- 1m(count
summary (m)

maxdepth + no3, longnosedace)

Call:
Im(formula = count

maxdepth + no3, data = longnosedace)

Residuals:
Min 1Q Median 3Q Max
-55.060 -27.704 -8.679 11.794 165.310

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -17.5550 15.9586 -1.100 0.27544

maxdepth 0.4811 0.1811 2.656 0.00997 **
no3 8.2847 2.9566 2.802 0.00671 *x*
Signif. codes: O 'x¥k' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 43.39 on 64 degrees of freedom
Multiple R-squared: 0.1936,Adjusted R-squared: 0.1684
F-statistic: 7.682 on 2 and 64 DF, p-value: 0.001022
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Multiple regression model Additional explanatory variables (X1 + X2)

Interpretation

@ Intercept (8p): The expected count of Longnose Dace
when maximum depth and nitrate concentration are
both zero is -18.

o Coefficient for maxdepth (51): Holding nitrate
concentration constant, each cm increase in maximum
depth is associated with an additional 0.48 Longnose
Dace counted on average.

@ Coefficient for no3 (f2): Holding maximum depth
constant, each mg/liter increase in nitrate
concentration is associated with an addition 8.3
Longnose Dace counted on average.

@ Coefficient of determination (R?): The model explains
19% of the variability in the count of Longnose Dace.
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Interactions (X1 X2)

Interactions

Why an interaction?

Two explanatory variables are said to interact if the effect that one of them has on
the mean response depends on the value of the other.

For example,

@ Longnose dace count: The effect of nitrate (no3)
on longnose dace count depends on the maxdepth.
(Continuous-continuous)

@ Energy expenditure: The effect of mass depends
on the species type. (Continuous-categorical)

@ Crop yield: the effect of tillage method depends on
the fertilizer brand (Categorical-categorical)

(STAT587@ISU) RO5 - Multiple Regression
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Interactions (X1 X2) Continuous-continuous interaction

Continuous-continuous interaction

For observation i, let
@ Y; be the response
@ X; 1 be the first explanatory variable and

@ X, o be the second explanatory variable.

The mean containing only main effects is
i = Bo + B1Xi1 + B2X; 0.
The mean with the interaction is

pi = Bo + B1Xi1 + BaXio + B3X;1.X 2.

(STAT5870ISU) RO5 - Multiple Regression March 30, 2021 16 /37



Interactions (X1 X2) Continuous-continuous interaction

Intepretation - main effects only

Let X;1 = 21 and X, 2 = z2, then we can rewrite the line (p) as

p = (Bo + Paw2) + P71

which indicates that the intercept of the line for 1 depends on the value of x5.

Similarly,

p=(Bo + Brz1) + P22

which indicates that the intercept of the line for xo
depends on the value of x.
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Interactions (X1 X2) Continuous-continuous interaction

Intepretation - with an interaction

Let X;1 = 21 and X, 2 = z2, then we can rewrite the mean (u) as

p=(Bo + Baxa) + (81 + Bar2)z1

which indicates that both the intercept and slope for x; depend on the value of xs.

Similarly,

w=(Bo+ Pix1) + (B2 + Psx1)z2

which indicates that both the intercept and slope for xo
depend on the value of z7.

(STAT5870ISU) RO5 - Multiple Regression March 30, 2021 18/37



Interactions (X

R code and output - main effects only

Call:
Im(formula = count ~ no3 + maxdepth, data = longnosedace)

Residuals:
Min 1Q Median 3Q Max
-55.060 -27.704 -8.679 11.794 165.310

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -17.5550 156.9586 -1.100 0.27544

no3 8.2847 2.9566 2.802 0.00671 *x
maxdepth 0.4811 0.1811 2.656 0.00997 *x
Signif. codes: O 'x**' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 43.39 on 64 degrees of freedom
Multiple R-squared: 0.1936,Adjusted R-squared: 0.1684
F-statistic: 7.682 on 2 and 64 DF, p-value: 0.001022
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Interactions (X Continuous-continuous interaction

R code and output - with an interaction

Call:
Im(formula = count ~ no3 * maxdepth, data = longnosedace)

Residuals:
Min 1Q Median 3Q Max
-65.111 -21.399 -9.562 5.953 151.071

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 13.321043 23.455710 0.568 0.5721
no3 -4.646272 7.856932 -0.591 0.5564
maxdepth -0.009338 0.329180 -0.028 0.9775
no3:maxdepth 0.201219 0.113576 1.772 0.0813

Signif. codes: O 'x**' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 42.68 on 63 degrees of freedom

Multiple R-squared: 0.2319,Adjusted R-squared: 0.1953
F-statistic: 6.339 on 3 and 63 DF, p-value: 0.0007966

RO5 - Multiple Regression March 30, 2021 20/37



Interactions (X1 X2) Continuous-continuous interaction

Visualizing the model
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Continuous-categorical interaction

Interactions (X

In-flight energy expenditure (Sleuth3::case1002)
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Interactions (X1 X2) Continuous-categorical interaction

Continuous-categorical interaction

Let category A be the reference level. For observation i, let
@ Y; be the response
Xi1 be the continuous explanatory variable,

B; be a dummy variable for category B, and

C; be a dummy variable for category C.

The mean containing only main effects is
i = Bo+ B1Xi1 + BaB; + 53C;.
The mean with the interaction is

pi = Bo+ P1Xi1 + BoBi + B3C; + B4 X1 Bi + B35 X1C;.
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Interactions (X1 X2) Continuous-categorical interaction

Interpretation for the main effect model

The mean containing only main effects is

wi = Bo + B1Xi1 + BaBi + B3C;.

For each category, the line is

Category Line (p)
A Bo + 65X
B (Bo+B2) + X
c (Bot+B3) + BiX

Each category has a different intercept, but a common
slope.
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Interactions (X1 X2) Continuous-categorical interaction

Interpretation for the model with an interaction

The model with an interaction is

wi = Po + B1Xi1 + B2 B + B3C; + BaX;1B; + B5Xi1C;

For each category, the line is

Category Line (p)
A Bo + 5 X
B (Bo+ B2) +(B1+ Ba)X
¢ (Bo+ B3) +(B1+B5)X

Each category has its own intercept and its own slope.
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Interactions (X

Continuous-categorical interaction

R code and output - main effects only

summary (mM <- 1m(log(Energy) ~ log(Mass) + Type, case1002))

Call:
Im(formula = log(Energy) ~ log(Mass) + Type, data = casel002)

Residuals:
Min 1Q Median 3Q Max
-0.23224 -0.12199 -0.03637 0.12574 0.34457

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.49770 0.14987 -9.993 2.77e-08 *xx*
log(Mass) 0.81496 0.04454 18.297 3.76e-12 ***

Typenon-echolocating bats -0.07866 0.20268 -0.388 0.703
Typenon-echolocating birds 0.02360 0.15760  0.150 0.883

Signif. codes: 0 '**xx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.186 on 16 degrees of freedom

Multiple R-squared: 0.9815,Adjusted R-squared: 0.9781
F-statistic: 283.6 on 3 and 16 DF, p-value: 4.464e-14
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Interactions (X

Continuous-categorical interaction

R code and output - with an interaction

summary (mI <- 1m(log(Energy) ~ log(Mass) * Type, case1002))

Call:
Im(formula = log(Energy) ~ log(Mass) * Type, data = casel002)

Residuals:
Min 1Q Median 3Q Max
-0.25152 -0.12643 -0.00954 0.08124 0.32840

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.47052 0.24767 -5.937 3.63e-05 **x*
log(Mass) 0.80466 0.08668 9.283 2.33e-07 *x*x
Typenon-echolocating bats 1.26807 1.28542 0.987 0.341
Typenon-echolocating birds -0.11032 0.38474 -0.287 0.779
log(Mass) : Typenon-echolocating bats -0.21487 0.22362 -0.961 0.353
log(Mass) : Typenon-echolocating birds 0.03071 0.10283  0.299 0.770
Signif. codes: O '*¥*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1899 on 14 degrees of freedom
Multiple R-squared: 0.9832,Adjusted R-squared: 0.9771
F-statistic: 163.4 on 5 and 14 DF, p-value: 6.696e-12
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Continuous-categorical interaction

Interactions (X

Visualizing the models
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Interactions (X1 X2) Categorical-categorical interaction

Seaweed regeneration (Sleuth3::case1301 subset)
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Interactions (X1 X2) Categorical-categorical interaction

Categorical-categorical

Let category A and type O be the reference level. For observation i, let
@ Y; be the response,
@ 1; be a dummy variable for type 1,
@ B; be a dummy variable for category B, and

@ C; be a dummy variable for category C.

The mean containing only main effects is
pi = Bo + B1l; + B2 B; + B3C;.
The mean with an interaction is

pi = Bo + B1l; + BoB; + B3C; + B41;B; + B51,C;.
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Interactions (X1 X2) Categorical-categorical interaction

Interpretation for the main effects model

The mean containing only main effects is

Wi = Po + B1l; + B B; + B3C;.
The means in the main effect model are

Category

Type A B C

0 | Bo Bo + B2 Bo + B3
L | Bo+B1 Bo+Pi+B2 Bo+ P+ PBs
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Interactions (X1 X2) Categorical-categorical interaction

Interpretation for the model with an interaction

The mean with an interaction is

i = Po + B1l; + BoBi + B3C; + B41;B; + B51,C;.
The means are

Category

Type | A B C

0 |5 Bo + B2 Bo + 33

1 |Bo+B1 Pot+Br+Ba+Ps Bo+pP1+PBs+5s

This is equivalent to a cell-means model where each
combination has its own mean.
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Interactions (X

Categorical-categorical interaction

R code and output - main effects only

Call:
1m(formula = Cover ~ Block + Treat, data = casel1301_subset)

Residuals:
Min 1Q Median 3Q Max
-2.3333 -0.6667 0.0000 0.7917 1.8333

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.6667 0.7683 6.074 0.000298 **x*
BlockB2 2.1667 0.7683 2.820 0.022491 *
TreatLf -1.5000 0.9410 -1.594 0.149578
TreatLfF -3.0000 0.9410 -3.188 0.012838 =*
Signif. codes: O 'x**' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.331 on 8 degrees of freedom
Multiple R-squared: 0.6937,Adjusted R-squared: 0.5788
F-statistic: 6.039 on 3 and 8 DF, p-value: 0.01881
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Interactions (X

Categorical-categorical interaction

R code and output - with an interaction

Call:
Im(formula = Cover ~ Block * Treat, data = casel301_subset)

Residuals:
Min 1Q Median 3Q Max
-1.500 -0.625 0.000 0.625 1.500

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.000e+00 8.898e-01 4.496 0.00412 *x*

BlockB2 3.500e+00 1.258e+00 2.782 0.03193 *
TreatLf -2.719e-16 1.258e+00 0.000 1.00000
TreatLfF -2.500e+00 1.258e+00 -1.987 0.09413 .
BlockB2:TreatLf -3.000e+00 1.780e+00 -1.686 0.14280
BlockB2:TreatLfF -1.000e+00 1.780e+00 -0.562 0.59450
Signif. codes: 0 '**x' 0.001 'x*' 0.01 '#' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.258 on 6 degrees of freedom
Multiple R-squared: 0.7946,Adjusted R-squared: 0.6234
F-statistic: 4.642 on 5 and 6 DF, p-value: 0.04429
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Interactions (X1 X2) Categorical-categorical interaction

Visualizing the models

Main effects Interaction
A
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Interactions (X1 X2) Categorical-categorical interaction

When to include interaction terms

From The Statistical Sleuth (3rd ed) page 250:
@ when a question of interest pertains to an interaction
@ when good reason exists to suspect an interaction or

@ when interactions are proposed as a more general model for the purpose of examining the
goodness of fit of a model without interaction.
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Interactions (X1 Xo) ESIuIERY

Multiple regression explanatory variables

The possibilities for explanatory variables are
@ Higher order terms (X?)
e Additional explanatory variables (X; and X3)
@ Dummy variables for categorical variables (X7 = I())
e Interactions (X;X2)
e Continuous-continuous

e Continuous-categorical
o Categorical-categorical

We can also combine these explanatory variables, e.g.
@ including higher order terms for continuous
variables along with dummy variables for
categorical variables and
e including higher order interactions (X7 X2 X3).
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Assumptions
One-way ANOVA model/assumptions

The one-way ANOVA (ANalysis Of VAriance) model is
}/ij ifTLdN(,uj,0'2) or YVij :,uj—l-éij, Eij @N(O,oj)
forj=1,...,Jandi=1,...,n;.

Assumptions:
@ Errors are normally distributed.
@ Errors have a common variance.

@ Errors are independent.

(STAT587@ISU) R06 - ANOVA and F-tests
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G
ANOVA assumptions graphically
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(VTSI NEIEM  One-way ANOVA F-test

Consider the mice data set
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One-way ANOVA F-test
One-way ANOVA F-test

Are any of the means different?

Hypotheses in English:
Hy: all the means are the same

Hy: at least one of the means is different

Statistical hypotheses:

Hy: pj=pforallj Yij%iN(u,az)
ind

Hi: pj# pj forsome jand j° Yy '~ N (uj,0?)

An ANOVA table organizes the relevant quantities for
this test and computes the pvalue.
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ANOVA table
ANOVA table

A start of an ANOVA table:

Source of variation Sum of squares d.f. Mean square
Factor A (Between groups) SSA =37 n, (Y V)i , J—1 554

Error (Within groups) SSE = ZJ (Y -Y5)T n—J £2E(=467)
Total SST=y7 3", (Yy-Y) n-1

where
@ J is the number of groups,
@ n; is the number of observations in group 7,
o n= ijl n; (total observations),
® Y; =3, Yi; (average in group j),
@ and V=137 57 Vi (overall average).
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(TSI NEIENN ANOVA table

ANOVA table

An easier to remember ANOVA table:

Source of variation Sum of squares df Mean square F-statistic p-value
Factor A (between groups) SSA J—-1 MSA =SSA/J — 1 MSA/MSE (see below)
Error (within groups) SSE n—J MSE = SSE/n — J

Total SST=SSA-+SSE n—1

Under Hy (p; = ),

o the quantity MSA/MSE has an F-distribution with
J — 1 numerator and n — J denominator degrees

of freedom,

o larger values of MSA/MSE indicate evidence

against Hy, and

@ the p-value is determined by
P(FJ_Ln_J > MSA/MSE)

(STAT5870ISU)
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F-distribution

F-distribution has two parameters:
@ numerator degrees of freedom (ndf)
e denominator degrees of freedom (ddf)

F(5, 300)

0.8

0.6

density

0.2

0.0

0 i 2 3 4
F
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ANOVA tabe
One-way ANOVA F-test (by hand)

# A tibble: 7 x 4
Diet n mean sd
<chr> <int> <dbl> <dbl>
1 N/N85 57 32.7 5.13
2 N/R4O 60 45.1 6.70
3 N/R50 71 42.3 7.77
4 NP 49 27.4 6.13
5 R/R50 56 42.9 6.68
6 lopro 56 39.7 6.99
7 Total 349 38.8 8.97
So
SSA = 57 x (32.7 — 38.8)%2 + 60 x (45.1 — 38.8)2 + 71 x (42.3 — 38.8)% 4 49 x (27.4 — 38.8)>
+56 x (42.9 — 38.8)2 4+ 56 x (39.7 — 38.8)% = 12734
SST = (349 — 1) x 8.972 = 28000
SSE = SST — SSA = 28000 — 12734 = 15266
J—1= 5
n—J= 349 —6 =343
n—1= 348
MSA= SSA/J—1=12734/5 = 2547
MSE = SSE/n— J=15266/343 = 44.5 = §°
F= MSA/MSE = 2547/44.5 = 57.2
p=  P(F5343 > 57.2) < 0.0001

F statistic is off by 0.1 relative to the table later, because of rounding of 8.97. The real SST is

( 5870ISU)
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(TSI NEIENN ANOVA table

Graphical comparison
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AT
R code and output for one-way ANOVA

m <- Im(Lifetime~Diet, case0501)
anova (m)

Analysis of Variance Table
Response: Lifetime
Df Sum Sq Mean Sq F value Pr (>F)
Diet 5 12734 2546.8 57.104 < 2.2e-16 **x
Residuals 343 15297 44.6
Signif. codes: O '"*¥*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

There is evidence against the null model Y;; ind N(u,o?).
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General F-tests

General F-tests

The one-way ANOVA F-test is an example of a general hypothesis testing framework that uses
F-tests. This framework can be used to test

@ composite alternative hypotheses or, equivalently,
@ a full vs a reduced model.

The general idea is to balance the amount of variability remaining when moving from the

reduced model to the full model measured using the sums of squared errors (SSEs) relative to
the amount of complexity, i.e. parameters, added to the model.
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Testing full vs reduced models

If Y, nd N(pj,0?) for j =1,...,J and we want to test the hypotheses
@ Hy:p; = pforall j
o Hi :pj # pj for some j and j’

think about this as two models:
ind

e Hy:Y;; ~ N(u,0?) (reduced)
o Hy : Yy ™ N(uj,0?) (full)

We can use an F-test to calculate a p-value for tests of
this type.
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Nested models: full vs reduced

Two models are nested if the reduced model is a special case of the full model.

For example, consider the full model

Yij % N (g, 0).
One special case of this model occurs when p; = 1 and
thus

ind

Yy '~ N(p,0?).

is a reduced model and these two models are nested.
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Calculating the sum of squared residuals (errors)

Model Full Reduced
Assumption | Hi :Y; N (/L]‘,O'z) Hy : Y35 (s N(p, %)
Mean f =Y, = % S Yy =Y =137 Y1y,
Residual rij =Yy~ =Yy —Y; | ry=Y,,—p=Yi,;-Y
SSE ijl Z?il 7"2‘23‘ Zj:1 221 T?j

(STAT5870ISU)
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General F-tests

Do the following
1. Calculate
Extra sum of squares =
Residual sum of squares (reduced) - Residual sum of squares (full)
2. Calculate
Extra degrees of freedom =
# of mean parameters (full) - # of mean parameters (reduced)
3. Calculate F-statistics

_ Extra sum of squares / Extra degrees of freedom
Estimated residual variance in full model (62)

4. A pvalue is P(Fj4f ddf > F)

e numerator degrees of freedom (ndf) = Extra
degrees of freedom
o denominator degrees of freedom (ddf): df

(STAT587©ISU) - R06 - ANOVA and F-tests March 30, 2021
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General F-tests Example

Mice lifetimes

Consider the hypothesis that all diets have a common mean lifetime except NP.
Let
Yi; " Ny, 0?)
with j = 1 being the NP group then the hypotheses are
@ Hy:pj=pforj#1
o Hi:pj# pj for some j,j' =2,...,6

As models:
e Hy:Yjn %N(,ul,JQ) and Yj; @N(M,az) for j #1

ind

o H1:Y;j ~ N(uj,O'Q)
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General F-tests Example

As a picture
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bz
Making R do the calculations

case0501$NP = factor(case0501$Diet == "NP")

modR = 1lm(Lifetime“NP, case0501)
modF = 1lm(Lifetime~Diet, case0501)
anova (modR ,modF)

Analysis of Variance Table

Model 1: Lifetime ~ NP
Model 2: Lifetime ~ Diet
Res.Df RSS Df Sum of Sq F Pr (>F)
1 347 20630
2 343 15297 4 5332.2 29.89 < 2.2e-16 *xx*

Signif. codes: O 'x¥*' 0.001 's#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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General F-tests Lack-of-fit F-test for linearity

Lack-of-fit F-test for linearity

Let Y;; be the i'" observation from the j* group where the group is defined by those

observations having the same explanatory variable value (X;).

Two models: '
ANOVA: Yy ' N(;, 02) (full)
Regression: Y, N (B + B1X;,0%) (reduced)
@ Regression model is reduced:

o ANOVA has J parameters for the mean
o Regression has 2 parameters for the mean
e Set i = Bo + B Xj;.

@ Small pvalues indicate a lack-of-fit, i.e. the
regression (reduced) model is not adequate.

o Lack-of-fit F-test requires multiple observations at

a few X, values!
R06 - ANOVA and F-tests
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pH vs Time - ANOVA

pH vs Time in Steer Carcasses
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pH vs Time - Regression

pH vs Time in Steer Carcasses
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Lack-of-fit F-test for linearity
Lack-of-fit F-test in R

m_anova = lm(pH ~ as.factor(Time), Sleuth3::ex0816)
m_reg = lm(pH - Time , Sleuth3::ex0816)
anova(m_reg, m_anova)

Analysis of Variance Table

Model 1: pH ~ Time
Model 2: pH ~ as.factor(Time)

Res.Df RSS Df Sum of Sq F Pr (>F)
1 10 1.97289
2 6 0.05905 4 1.9138 48.616 0.0001048 **x*
Signif. codes: O 'sk*' 0.001 'k*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

There is evidence the data are incompatible with the
null hypothesis that states the means of each group fall
along a line.
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General F-tests ISIUINEIY

Summary

@ Use F-tests for comparison of full vs reduced model

e One-way ANOVA F-test
o General F-tests
o Lack-of-fit F-tests

Think about F-tests as comparing models.
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Interpreting p-values as posterior probabilities Regression p-values

Regression p-values

Recall the regression model

ind

Y; "N (pi,0%), = Bo+ BiXin+ -+ BpXip

A common hypothesis test is

Hy:8;=0 versus Hy:B8;#0

which has
p-value = 2P (T > |t|)

where T'~t,,_(,11) and t = Bj/SE(ﬁj)-

(STAT587@ISU) RO6a - Interpreting Regression p-values as Posterior Prot March 30, 2021 2/10



05 (e G
Example Regression Output

Call:
Im(formula = Speed ~ Conditions * log(NetToWinner), data = Sleuth3::ex0920)

Residuals:
Min 1Q Median 3Q Max
-1.50551 -0.32127 -0.00219 0.35201 1.13026

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 33.23367 0.34584 96.095 < 2e-16 **x*
ConditionsSlow -2.04517 0.72404 -2.825 0.0056 **
log(NetToWinner) 0.27830 0.02942 9.458 5.88e-16 **x
0.06583 1.316 0.1908

ConditionsSlow:log(NetToWinner) 0.08664
Signif. codes: O 'x**' 0.001 'skx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4978 on 112 degrees of freedom

Multiple R-squared: 0.7015,Adjusted R-squared: 0.6935
F-statistic: 87.75 on 3 and 112 DF, p-value: < 2.2e-16
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Interpreting p-values as posterior probabilities Bayesian Posterior Probabilities

Bayesian Posterior Probabilities
With prior p(3,02) x 1/02, we have

/Bj|yNt (p+1) (ﬁ],SE(,BJ) )
Thus

| _ Bi—Bi _ 05
P(Bj>0ly) =P <5E(ﬁj) ~ SE(5)

) =P (T > —t)
which is very close to

p-value = 2P (T > |t]).
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Interpreting p-values as posterior probabilities [EAATEFA - oI gleT@ DIE gl TIyaleYs}

Visualizing Posterior Distribution

Two Posterior Distributions Resulting in the Same p-value
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Interpreting p-values as posterior probabilities [EAATEFA - oI gleT@ DIE gl TIyaleYs}

Visualizing Posterior Distribution

Two Posterior Distributions Resulting in the Same p-value
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Interpreting p-values as posterior probabilities [EAATEFA - oI gleT@ DIE gl TIyaleYs}

Visualizing Posterior Distribution

Two Posterior Distributions Resulting in the Same p-value
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Interpreting p-values as posterior probabilities [EAATEFA - oI gleT@ DIE gl TIyaleYs}

Interpreting Regression p-values as Posterior Probabilities

Suppose we have a p-value for Hy : B =0 vs Hy : 3; # 0. Then

e If 3; <0, then

P(B; > 0ly) = p-value/2.
o If ﬁj > 0, then

P(B; < 0ly) = p-value/2.

Alternatively,
o If @ < 0, then

P(B; < 0ly) =1 — p-value/2.
o If ﬁj > 0, then

P(B; > 0Oly) =1 — p-value/2.
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Interpreting p-values as posterior probabilities Example Interpretation

Example Interpretation

Estimate Std. Error t value Pr(>|tl)

(Intercept) 33.23 0.35
ConditionsSlow -2.05 0.72
log(NetToWinner) 0.28 0.03
ConditionsSlow:log(NetToWinner) 0.09 0.07

Intercept

ConditionsSlow

log(NetToWinner)

ConditionsSlow:log(NetToWinner)

( T587@ISU) RO6a - Interpreting Regression p-values as Posterior Prot
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Interpreting p-values as posterior probabilities EESTLIIERY

Summary

Suppose we have a regression p-value for Hy : 3; =0 vs Hy : 3; # 0. Then
e If 3; <0, then
P(Bj < 0ly) =1 — p-value/2.
o If ﬁj > 0, then
P(B; > 0ly) =1 — p-value/2.

(STAT587@ISU) RO6a - Interpreting Regression p-values as Posterior Prot March 30, 2021 10/ 10



RO7 - Contrasts

(STAT5870ISU)

STAT 587 (Engineering)
lowa State University

March 30, 2021

RO7 - Contrasts

March 30, 2021

1/27



Diet Effect on Mice Lifetimes
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-
ANOVA and Regression Models

ANOVA model: ;
YZ] le N(M]’ )

with Y;; being the lifetime for the ith mouse on the jth diet for j =0, 1,2, 3,4, 5.

Regression model:
ind

Yi ~ N(Bo+ b1 Xig+ ...+ BpXip, 2)

where Y; is the lifetime for the ith mouse and X ; is an indicator for the ith mouse being on
the jth diet.

Reparameterized model since

po = Bo and p; = B+ B;

for j > 0.
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Scientific questions

Here are a few example scientific questions:
1. What is the effect of pre-wean calorie restriction on mean lifetimes?

2. What is the difference in mean lifetimes between mice on a 40 kcal diet compared to those on a
50 kcal diet?

3. What is the effect of high calorie vs low calorie diets on mean lifetimes?

We can compute contrasts:
Y1 = HR/R50 — KN/R50
Y2 = HN/R40 — %(MN/RE)O + 1R/R50)

(IMN/R50 + 1R/ R50 + KN/ R40 T iopro)
(NP + pnyNgs)

PN

V3 =
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Contrasts

A linear combination of group means has the form
7201M1+02/L2+---+CJMJ

where C; are known coefficients and yi; are the unknown population means.

A linear combination with C; + C5 + --- + Cj = 0 is a contrast.

Contrast interpretation is usually best if

|C1| + |Ca| + -+ -+ |Cy| =2, i.e. the positive
coefficients sum to 1 and the negative coefficients sum
to -1.
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 Commss |
Inference on Contrasts
Contrast

v =Cipr + Copg + -+ Cypuy with y=C1Y1+CoYo+---+C;Y

with standard error

c: O3 Cc?
SE(§) =64/ — + =2+ + =L,
ni1 o ny
p-values for Hy : v = go vs Ha : v # go and posterior
probabilities (i.e. 2P(y > 0ly) or 2P(y < 0ly)):

_ 99
SE(g)’

= 2P(Tn,J < —|t‘).

Two-sided equal-tail 100(1 — «)% confidence/credible
intervals:

g + tn—J,l—a/ZSE(g)'

(STAT587@ISU) RO7 - Contrasts March 30, 2021 6/27



Contrasts for mice lifetime dataset

For these contrasts:
1. Mean lifetimes for N/R50 and R/R50 diet are different.
2. Mean lifetimes for N/R40 is different than for N/R50 and R/R50 combined.
3. Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie
diets combined.
Hy:v=0 Hp:~v#0:

Y1 = HKR/R50 — FILN/R5O

2 LILN/R40 — 5(1n/Rs50 + KR/ R50)

v3 = 3(N/Rs0 + HR/R50 T HN/RA0 + Hiopro)
—%(MNP + MN/N85)

N/N85  N/R40 _ N/R50 NP R/R50 lopro
early rest - none @ 50kcal 0.00 0.00 -1.00 0.00 1.00 0.00
40kcal /week - 50kcal /week 0.00 1.00 -0.50 0.00 -0.50 0.00
g cal _hicy _0 .50 0 0.25 -0.50 0.25 0.25
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R
Fit the Multiple Regression Model

m = Im(Lifetime ~ Diet, data = Sleuth3::case0501)
summary (m)

Call:
1m(formula = Lifetime ~ Diet, data = Sleuth3::case0501)

Residuals:
Min 1Q Median 3Q Max
-25.5167 -3.3857 0.8143 5.1833 10.0143

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 32.6912 0.8846 36.958 < 2e-16 **x*
DietN/R40 12.4254 1.2352 10.059 < 2e-16 *x*x*
DietN/R50 9.6060 1.1877 8.088 1.06e-14 *xx
DietNP -5.2892 1.3010 -4.065 5.95e-05 *xx
DietR/R50 10.1945 1.2665 8.113 8.88e-15 *xx
Dietlopro 6.9945 1.2565 5.567 5.25e-08 **¥x*
Signif. codes: O 'x¥*' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.678 on 343 degrees of freedom
Multiple R-squared: 0.4543,Adjusted R-squared: 0.4463
F-statistic: 57.1 on 5 and 343 DF, p-value: < 2.2e-16
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Estimate Group Means

library("emmeans")
em = emmeans (m,

em

Diet
N/N85
N/R40
N/R50
NP
R/R50
lopro

emmean

32.7
45.1
42.3
.4
9
7

27

42.
39.

oooooo

~ Diet)

SE
885
862
793
954
892
892

df
343
343
343
343
343
343

lower.CL upper.CL

31.
43.4
40.7
.5
1
9

25

41.
37.

Confidence level used: 0.95

0

34.

46

43.

29

44.

41

o wo o
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_______________________ Cc i

K_list

$ early rest - none @ 50kcal”
[1] o0 0-1 0 1 O

$~40kcal/week - 50kcal/week”
[1] 0.0 1.0 -0.5 0.0 -0.5 0.0

$ 1o cal - hi cal®
[1] -0.50 0.25 0.25 -0.50 0.25 0.25

co

contrast(em, K_list)

co

contrast estimate SE df t.ratio p.value
early rest - none @ 50kcal 0.589 1.19 343 0.493 0.6223
40kcal/week - 50kcal/week 2.525 1.05 343 2.408 0.0166
lo cal - hi cal 12.450 0.78 343 15.961 <.0001

confint (co)

contrast estimate SE df lower.CL upper.CL
early rest - none @ 50kcal 0.589 1.19 343 -1.759 2.94
40kcal/week - 50kcal/week 2.525 1.05 343 0.463 4.59
lo cal - hi cal 12.450 0.78 343 10.915 13.98
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Summary

@ Contrasts are linear combinations of means where the coefficients sum to zero

@ t-test tools are used to calculate pvalues and confidence intervals
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Data analysis: sulfur effect on scab disease in potatoes

Sulfur effect on scab disease in potatoes

The experiment was conducted to investigate the effect of sulfur on controlling scab disease
in potatoes. There were seven treatments: control, plus spring and fall application of 300,
600, 1200 Ibs/acre of sulfur. The response variable was percentage of the potato surface area
covered with scab averaged over 100 random selected potatoes. A completely randomized
design was used with 8 replications of the control and 4 replications of the other treatments.

Cochran and Cox. (1957) Experimental Design (2nd ed). pg96 and Agron. J. 80:712-718 (1988)

Scientific questions:
@ Does sulfur have any impact at all?

@ What is the difference between spring and fall
application of sulfur?

@ What is the effect of increased sulfur application?
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Data analysis: sulfur effect on scab disease in potatoes Exploratory

Data

0N O R WN R

)
w N = O
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1
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300
0
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1200
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1200
300
600
[
300
1200
600
300

fall
(Missing)
spring
fall
spring
spring
spring
fall
(Missing)
spring
fall
fall
spring
(Missing)
(Missing)
spring
fall
spring
fall
(Missing)
fall
spring
fall
fall
spring
(Missing)
spring
spring

inf trt row col sulfur application treatment

F3
0
S6
F12
Sé
S12
S3
F6
0
S3
F12
F6
S3
0

0
S6
F3
S12
F6
0
Fé
S12
F3
F12
S3
0
S12
S6
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Data analysis: sulfur effect on scab disease in potatoes Exploratory

Design
Completely randomized design
potato scab experiment
< F3 (] S6 | F12 | S6 | S12 | S3 | F6
™ (0] S3 | F12 F6 S3 O o} S6
z
<
o F3 | S12 | F6 o F6 | S12 | F3 | F12
- S3 O | s12| s6 O |F12| O F3
1 2 3 4 5 6 7 8
col
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Data analysis: sulfur effect on scab disease in potatoes Exploratory

Treatment visualization

S 4 4 4
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o
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0 300 600 1200
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Data analysis: sulfur effect on scab disease in potatoes Exploratory

Data

L]
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Data analysis: sulfur effect on scab disease in potatoes Exploratory

Data

Average scab percent

301
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application
A fall
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A 4 spring
A
= (Missing)
N A
-
A
T T T T T v
0 250 500 750 1000 1250
Sulfur

RO7 - Contrasts March 30, 2021

17/27



Data analysis: sulfur effect on scab disease in potatoes Exploratory

Data

L]
30 =
- N
3
o
8 201 4
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[0}
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g
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A
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Data analysis: sulfur effect on scab disease in potatoes Exploratory

Data

Average scab percent

301

201

sulfur
1200
900
600
300
0
application
o fall
A spring
= (Missing)
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Data analysis: sulfur effect on scab disease in potatoes Model

Yi;j: avg % of surface area covered with scab for plot ¢ in treatment j for j =1,...,7.
Assume Y;; ind N(uj,0?).

Hypotheses:
o Difference amongst any means:
One-way ANOVA F-test
o Any effect:
Contrast: control vs sulfur
o Fall vs spring:
Contrast: fall vs spring applications

e Sulfur level:
Contrast: linear trend
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Data analysis: sulfur effect on scab disease in potatoes Model

Contrasts
o Sulfur effect: Any sulfur vs none
v = t(uri2 + 1pe + 1es + 1S3 + se + ps12) — Ho

= H(up12 + pre + prs + s + pse + ps12 — 610)

@ Fall vs spring: Contrast comparing fall vs spring
applications
v = 3(ur12 + pre + prs) + O0po — 5 (uss + pse + psia)

= L [lppi2 + Lppe + 1prs + Opo — 1uss — 1use — 1psio)
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Data analysis: sulfur effect on scab disease in potatoes Model

Contrasts (cont.)

@ Sulfur linear trend

o The group sulfur levels (X;) are 12, 6, 3, 0, 3, 6, and 12 (100 Ibs/acre)
e and a linear trend contrast is X; — X

X; |12 6 3 0 3 6 12|
X;i-X|] 6 0 -3 6 -3 0 6]

v =6uri2 +0pps —3urs — 6o — 3ps3 + Opse + 6pis12
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Data analysis: sulfur effect on scab disease in potatoes AGEINVGERINN

Trt

F12 F6 F3 O S3 S6 SI12

Div

Sulfur v control 1 1 1 6 1 1 1
Fall v Spring 1 1 1 0 -1 -1 -1
Linear Trend 6 0O -3 -6 -3 0 6

= W o

K =
list("sulfur - control" =c( 1, 1, 1,-6, 1, 1 1)/6,

"fall - spring" =c(1, 1,1, 0,-1,-1, -1)/3
"linear trend" =c(6, 0,-3,-6,-3, 0 6)/1)

m = Im(inf ~ treatment, data = d)

anova (m)

Analysis of Variance Table

Response: inf

Df Sum Sq Mean Sq F value Pr(>F)

treatment 6 972.34 162.057 3.6081 0.01026 *

Residuals 25 1122.88 44.915

Signif. codes: O 'x**' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Data analysis: sulfur effect on scab disease in potatoes Analysis in R

Residuals

Residuals

Residual Plot Q-Q Plot COOK's D Plot
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Data analysis: sulfur effect on scab disease in potatoes AGEINVGERINN

em <- emmeans(m, ~“treatment); em

treatment emmean SE df lower.CL upper.C
15

F12 5.75 3.35 25 =ilo 12.7
Fé 15.50 3.35 25 8.60 22.4
F3 9.50 3.35 25 2.60 16.4
0 22.62 2.37 25 17.74 27.5
S3 16.75 3.35 25 9.85 23.7
S6 18.25 3.35 25 11.35 25.2
S12 14.25 3.35 25 7.35 21952

Confidence level used: 0.95

co <- contrast(em, K)
confint (co)

contrast estimate SE df lower.CL upper.CL
sulfur - control -9.29 2.74 25 -14.9 -3.657
fall - spring -6.17 2.74 25 =ilil & -0.532
linear trend -94.50 34.82 25 -166.2 -22.779

Confidence level used: 0.95
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Data analysis: sulfur effect on scab disease in potatoes AGEINVGERINN

residuals

~104

col
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Summary

For this particular data analysis
Significant differences in means between the groups (ANOVA Fg 25 = 3.61 p=0.01)

@ Having sulfur was associated with a reduction in scab % of 9 (4,15) compared to no sulfur
e Fall application reduced scab % by 6 (0.5,12) compared to spring application
°

Linear trend in sulfur was significant (p=0.01)

Concerned about spatial correlation among
columns

Consider a logarithm of the response
o Clfor F12 (-1.2, 12.7)
o Non-constant variance (residuals vs predicted,
sulfur, application)
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Random samples and random treatment assignment

Recall that the objective of data analysis is often to make an inference about a population

based on a sample. For the inference to be statistically valid, we need a random sample from
the population.

In order to make a causal statment, the levels of the explanatory variables need to be
randomly assigned to the experimental units.

@ random assignment — randomized experiment

@ non-random assignment — observational study

(STAT5870ISU) RO8 - Experimental design March 30, 2021 2/28



Data collection

Treatment randomly assigned?

No Yes
Sample Observational study Randomized experiment
No inference to population No inference to population
Not random
No cause-and-effect Yes cause-and-effect
Yes inference to population Yes inference to population
Random pop pop

No cause-and-effect

Yes cause-and-effect

(STAT5870ISU)
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|
Strength of wood glue

You are interested in testing two different wood glues:
@ Gorilla Wood Glue
o Titebond 1413 Wood Glue

On a scarf joint:

So you collect up some wood, glue the pieces together,
and determine the weight required to break the joint.
(Lots of details are missing.)

Inspiration: https://woodgears.ca/joint_strength/glue.html

(STAT5870ISU) RO8 - Experimental design March 30, 2021 4/28


https://woodgears.ca/joint_strength/glue.html

Completely Randomized Design (CRD)

Suppose | have 8 pieces of wood laying around. | cut each piece and randomly use either
Gorilla or Titebond glue to recombine the pieces. | do the randomization in such a way that |
have exactly 4 Gorilla and 4 Titebond results, e.g.

# A tibble: 8 x 2
woodID glue

<chr>
wood1
wood2
wood3
wood4
wood5
wood6
wood7
wood8

0N O WN R

<chr>
Gorilla
Titebond
Gorilla
Titebond
Titebond
Gorilla
Titebond
Gorilla

This is called a completely randomized design (CRD).
Because all treatment (combinations) have the same
number of replicates, the design is balanced. Because
all treatment (combinations) are repeated, the design is

(STAT5870ISU)
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Completely Randomized Design (CRD)

Visualize the data
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=
o
a
.
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.
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Completely Randomized Design (CRD)

Model

Let
e P, be the weight (pounds) needed to break wood w,

@ T, be an indicator that the Titebond glue was used on wood w, i.e.

T = I(glue,, = Titebond).
Then a regression model for these data is

ind
P, g N(BO +61Tw70—2)-

(STAT587@ISU) RO8 - Experimental design
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Completely Randomized Design (CRD)

Check model assumptions

Residual Plot Q-Q Plot COOK's D Plot
. 0 069
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Completely Randomized Design (CRD)

Obtain statistics

coefficients(m)

(Intercept) glueTitebond
243.6971 52.8206

summary (m) $r . squared
[1] 0.8531122
confint (m)

2.5 % 97.5 %
(Intercept) 228.21529 259.17885
glueTitebond 30.92606 74.71514

emmeans (m, ~glue)

glue emmean SE df lower.CL upper.CL
Gorilla 244 6.33 6 228 259
Titebond 297 6.33 6 281 312

Confidence level used: 0.95
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Completely Randomized Design (CRD)

Interpret results

A randomized experiment was designed to evaluate the effectiveness of Gorilla and Titebond in
preventing failures in scarf joints cut at a 20 degree angle through 1" x 2" spruce with 4
replicates for each glue type. The mean break weight (Ibs) was 244 with a 95% Cl of
(228,259) for Gorilla and 297 (281,312) for Titebond. Titebond glue caused an increase in

break weight of 53 (31,75) Ibs compared to Gorilla Glue. This difference accounted for 85 %
of the variability in break weight.

(STAT587@ISU) RO8 - Experimental design
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Randomized complete block design (RCBD)

Randomized complete block design (RCBD)

Suppose the wood actually came from two different types: Maple and Spruce. And perhaps you have
reason to believe the glue will work differently depending on the type of wood. In this case, you would

want to block by wood type and perform the randomization within each block, i.e.

# A tibble: 8 x 3

woodID woodtype glue
<chr> <fct> <chr>
woodl Spruce Gorilla
wood2 Spruce Titebond
wood3 Spruce Gorilla
wood4 Spruce Titebond
wood5 Maple Titebond
wood6 Maple Gorilla
wood7 Maple Titebond
wood8 Maple Gorilla

0N O R WN R

This is called a randomized complete block design (RCBD).
If all treatment combinations exist, then the design is
complete. If a treatment combination is missing, then the
design is incomplete.
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Randomized complete block design (RCBD)

Visualize the data
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Randomized complete block design (RCBD)

Visualize the data - a more direct comparison

300
A
8 o751 )\ glue
§ Gorilla
o 4 Titebond
250
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woodtype
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Randomized complete block design (RCBD)

Main effects model

Let

e P, be the weight (pounds) needed to break wood w
@ T, be an indicator that Titebond glue was used on wood w, and
@ M, be an indicator that wood w was Maple.

Then a main effects model for these data is

ind
P, "~ N(Bo + 1Ty + BaMy, 0°)
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Randomized complete block design (RCB

Perform analysis

Call:
Im(formula = pounds ~ glue + woodtype, data = d)

Residuals:
1 2 3 4 5 6 7 8
11.146 -18.384 -9.611 16.849 -3.902 -4.822 5.437 3.286

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 241.366 8.294 29.100 8.98e-07 *x*x
glueTitebond 52.821 9.578 5.515 0.00268 *x*
woodtypeMaple 4.662 9.578 0.487 0.64702
Signif. codes: O 'x**' 0.001 'skx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.54 on 5 degrees of freedom

Multiple R-squared: 0.8598,Adjusted R-squared: 0.8037

F-statistic: 15.33 on 2 and 5 DF, p-value: 0.007365
2.5 % 97.5 7

(Intercept)  220.04467 262.68760

glueTitebond  28.20070 77.44051

woodtypeMaple -19.95804 29.28177
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Replication

Replication

Since there are more than one observation for each woodtype-glue combination, the design is
replicated:

d %>% group_by(woodtype, glue) %>} summarize(n = n())
# A tibble: 4 x 3
# Groups: woodtype [2]
woodtype glue n
<fct> <chr> <int>
1 Spruce Gorilla 2
2 Spruce Titebond 2
3 Maple Gorilla 2
4 Maple Titebond 2

When the design is replicated, we can consider
assessing an interaction.
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Replication

Interaction model
Let

e P, be the weight (pounds) needed to break wood w
@ T, be an indicator that Titebond glue was used on wood w, and
@ M, be an indicator that wood w was Maple.

Then a model with the interaction for these data is

ind

P, ~ N(BO + BlTw + B2Mw + /BBTwMun 02)
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Replication

Assessing an interaction using a t-test

Call:

Im(formula = pounds ~ glue * woodtype, data =

Residuals:
1 2 3 4 5
10.379 -17.616 -10.379 17.616 -4.670

-4.054

7
4.670

4.054

Estimate Std. Error t value Pr(>ltl)

Coefficients:

(Intercept) 242.134
glueTitebond 51.285
woodtypeMaple 3.127

glueTitebond:woodtypeMaple 3.070

Signif. codes: 0 'x**' 0.001 'sx' 0.01

10.680 22.671 2.
15.104 3.395
15.104 0.207
21.361 0.144
'x' 0.05 '.' 0.1

Residual standard error: 15.1 on 4 degrees of freedom

Multiple R-squared: 0.8605,Adjusted R-squared:

0.7558

F-statistic: 8.223 on 3 and 4 DF, p-value: 0.03475

24e-05 *xx
0.0274 *
0.8461
0.8927
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Replication

Assessing an interaction using an F-test

anova (m)

Analysis of Variance Table

Response: pounds
Df Sum Sq Mean Sq F value

glue 1 5580.0 5580.0 24.4582
woodtype 1 43.5 43.5 0.1905
glue:woodtype 1 4.7 4.7 0.0207
Residuals 4 912.6 228.1

Signif. codes: 0 '#**x' 0.001 '#x' 0.01

dropi(m, test='F')

Single term deletions

Model:
pounds ~ glue * woodtype

Pr(>F)
0.007786 *x*
0.685012
0.892654

'¥' 0.05 '.' 0.1 ' ' 1

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 912.58 45.895

glue:woodtype 1 4.714 917.30 43.936 0.0207 0.8927
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What if this had been your data?

A
300+
A
o 280+ glue
©
5 Gorilla
o
o 4 Titebond
2604
a
2404
A

Sprluce Malple
woodtype
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Replication

Assessing an interaction using a t-test

Call:
Im(formula = pounds ~ glue * woodtype, data = d)

Residuals:
1 2 3 4 5 6 7 8
1.657 -1.657 -10.312 10.312 -4.741 23.986 4.741 -23.986

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 252.26 13.29 18.976 4.54e-05 **x
glueTitebond 49.76 18.80 2.647 0.0572
woodtypeMaple 19.10 18.80 1.016 0.3670
glueTitebond:woodtypeMaple -80.76 26.59 -3.038 0.0385 *
Signif. codes: O 'x**' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.8 on 4 degrees of freedom
Multiple R-squared: 0.7544,Adjusted R-squared: 0.5702
F-statistic: 4.095 on 3 and 4 DF, p-value: 0.1034
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el ==eTy
Unreplicated study

Suppose you now have
@ 5 glue choices
@ 4 different types of wood with
@ 5 samples of each type of wood.

Thus you can only run each glue choice once on each type of wood.

Then you can run an unreplicated RCBD.
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Visualize
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Fit the main effects (or additive) model

m <- lm(pounds ~ glue + woodtype, data = d)
anova(m)

Analysis of Variance Table

Response: pounds

Df Sum Sq Mean Sq F value Pr(>F)
glue 4 754.3 188.58 0.4332 0.7822
woodtype 3 465.1 155.04 0.3562 0.7857
Residuals 12 5223.7 435.31
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Fit the main effects (or additive) model

Call:
Im(formula = pounds ~ glue + woodtype, data = d)

Residuals:
Min 1Q Median 3Q Max
-33.498 -10.327 5.084 10.989 23.325

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 260.7220 13.1956 19.758 1.61e-10 **x*

glueGorilla -2.7764 14.7531 -0.188 0.854
glueHot glue 0.2159 14.7531 0.015 0.989
glueTitebond -14.4517 14.7531 -0.980 0.347
glueWeldbond 3.1903 14.7531 0.216 0.832
woodtypeMaple -2.8726 13.1956 -0.218 0.831
woodtypeOak 1.7564 13.1956 0.133 0.896
woodtypeSpruce -10.8349 13.1956 -0.821 0.428
Signif. codes: O '*¥*' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.86 on 12 degrees of freedom
Multiple R-squared: 0.1893,Adjusted R-squared: -0.2837
F-statistic: 0.4002 on 7 and 12 DF, p-value: 0.8845
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Unreplicated study
Fit the full (with interaction) model

Warning in anova.lm(m): ANOVA F-tests on an essentially perfect fit are
unreliable

Analysis of Variance Table

Response: pounds
Df Sum Sq Mean Sq F value Pr(>F)

glue 4 754.3 188.58
woodtype 3 465.1 155.04
glue:woodtype 12 5223.7 435.31
Residuals 0 0.0
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Unreplicated study
Fit the full (with interaction) model

Call:
Im(formula = pounds ~ glue * woodtype, data = d)

Residuals:
ALL 20 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 265.7301 NA NA NA
glueGorilla 0.1451 NA NA NA
glueHot glue 18.2476 NA NA NA
glueTitebond -21.9394 NA NA NA
glueWeldbond -35.3158 NA NA NA
woodtypeMaple -38.4658 NA NA NA
woodtypeOak -1.0001 NA NA NA
woodtypeSpruce 7.4822 NA NA NA
glueGorilla:woodtypeMaple 40.6031 NA NA NA
glueHot glue:woodtypeMaple 19.0424 NA NA NA
glueTitebond:woodtypeMaple  43.2335 NA NA NA
glueWeldbond:woodtypeMaple  75.0869 NA NA NA
glueGorilla:woodtypeOak -14.1101 NA NA NA
glueHot glue:woodtypelak -40.0202 NA NA NA
glueTitebond:woodtypelak 21.3197 NA NA NA
glueWeldbond:woodtypeOak 46.5929 NA NA NA
glueGorilla:woodtypeSpruce -38.1789 NA NA NA
glueHot glue:woodtypeSpruce -51.1490 NA NA NA
glueTitebond:woodtypeSpruce -34.6024 NA NA NA
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Replication Summary

Summary

@ Designs:

o Completely randomized design (CRD)

o Randomized complete block design (RCBD)
@ Deviations

e Unbalanced
o Incomplete
e Unreplicated
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Two factors

Consider the question of the affect of variety and density on yield under various experimental
designs:

@ Balanced, complete design
@ Unbalanced, complete

@ Incomplete

We will also consider the problem of finding the density
that maximizes yield.
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Data

An experiment was run on tomato plants to determine the effect of
@ 3 different varieties (A,B,C) and
@ 4 different planting densities (10,20,30,40)

on yield.

A balanced completely randomized design (CRD) with
replication was used.

@ complete: each treatment (variety X density) is represented
@ balanced: each treatment has the same number of replicates
@ randomized: treatment was randomly assigned to the plot
@ replication: each treatment is represented more than once

This is also referred to as a full factorial or fully crossed
design.
RO9 - Analysis of Experiments with Two Factors March 30, 2021 3/49



Hypotheses

@ How does variety affect mean yield?

e How is the mean yield for variety A different from B on average?
e How is the mean yield for variety A different from B at a particular value for density?

@ How does density affect mean yield?

o How is the mean yield for density 10 different from density 20 on average?
e How is the mean yield for density 10 different from density 20 at a particular value for variety?

@ How does density affect yield differently for each variety?

For all of these questions, we want to know
@ is there any effect and
@ if yes, what is the magnitude and direction of the effect.

Confidence/credible intervals can answer these questions.
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Two-way ANOVA

20
16+ Variety
L ]
o C
Q2 4 n
> " A A
L ] L ]
A = B
. 4 4
12 4
: L ]
A
A
n
A A
.
84 1
T . T T
10 20 30 40

Density

5870ISU)

R0O9 - Analysis of Experiments with Two Factors

March 30, 2021

5/49



ay ANOVA

Summary statistics

# A tibble: 12 x 5

# Groups: Variety [3]

Variety Density
<fct> <int>
10
20
30
40

W ~NO U WN
TWWwWEEEE>QQQ0
N
S

n mean sd
<int> <dbl> <dbl>
3 16.3 1.11
3 18.1 1.35
3 19.9 1.68
3 18.2 0.874
3 9.2 1.30
312.4 1.10
3 12.9 0.985
3 10.8 1.7
3 8.93 1.04
3 12.6 1.10
3 14.5 0.854
312.8 1.62
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Two-way ANOVA

@ Setup: Two categorical explanatory variables with I and J levels respectively
@ Model:
Yijr * N(pij,0?)
where Y is the
e kth observation at the

o ith level of variable 1 (variety) with i =1,...,T and the
o jth level of variable 2 (density) with j =1,...,J.

Consider the models:
o Additive/Main effects: p;; = p+ v; +9;
o Cell-means: p;; = p+v; + 65 + 45

10 | 20 | 30 | 40

A Hi1 | H12 | H13 | H14
B | po1 | oo | pos | poa
C | par | paz | p33 | a4
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As a regression model

Assign a reference level for both variety (C) and density (40).
Let V; and D; be the variety and density for observation i.
Build indicator variables, e.g. I(V; = A) and I(D; = 10).

> e o=

The additive/main effects model:

ui = Bo
+811(V; = A) 4 B=1(V; = B)
-‘rﬁgI(Di = 10) + ﬁ4I(Di = 20) + B5I(Di = 30).

5. The cell-means model:

ui = PBo
+411(Vi = A) + B21(V; = B)
+B831(D; = 10) + B41(D; = 20) + Bs1(D; = 30)

+B61(Vi = A)I(D; = 10) + B 71(Vi = A)I(D; = 20) + B sI(V; = A)I(D; = 30)
+891(Vi = B)(D; = 10) + Bi01(V; = B)I(D; = 20) + B L(V; = B)I(D; = 30)
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Two-way ANOVA ANOVA Table

ANOVA Table

ANOVA Table - Additive/Main Effects model
Source SS df MS F
Factor A SSA  (I-1) SSA/(I-1) MSA/MSE

Factor B SSB  (J-1) SSB/(J-1) MSB/MSE
Error SSE  n-I-J+1 SSE/(n-I-J+1)
Total SST n-1

ANOVA Table - Cell-means model

Source SS df MS
Factor A SSA I-1 SSA/(I-1) MSA/MSE
Factor B SSB J-1 SSB/(J-1) MSB/MSE
Interaction AB SSAB  (I-1)(J-1) SSAB /(I-1)(J-1) MSAB/MSE
Error SSE n-1J SSE/(n-1J)
Total SST n-1
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ANOVA Table

Two-way ANOVA in R

tomato$Density = factor(tomato$Density)
m = 1lm(Yield~Variety+Density, tomato)
dropl(m, test="F")

Single term deletions

Model:
Yield ~ Variety + Density
Df Sum of Sq RSS AIC F value Pr(>F)

<none> 46.07 20.880

Variety 2 327.60 373.67 92.235 106.659 2.313e-14 *x¥x*
Density 3 86.69 132.76 52.980 18.816 4.690e-07 *x¥x*
Signif. codes: O '"*¥*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

m = 1m(Yield~Variety#*Density, tomato)
dropl(m, scope = ~Variety+Density+Variety:Density, test="F")

Single term deletions

Model:
Yield ~ Variety * Density

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 38.040 25.984
Variety 2 104.749 142.789 69.603 33.0438 1.278e-07 *x*
Density 3 19.809 57.849 35.076 4.1660 0.01648 *
Variety:Density 6 8.032 46.072 20.880 0.8445 0.54836

Va4
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ARV [OMVARl  Additive vs cell-means

Additive vs cell-means

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not
significant. Remember that an insignificant test does not prove that there is no interaction.

Additive Cell-means
Interpretation Direct  More complicated
Estimate of 02  Biased Unbiased

We will continue using the cell-means model to answer the
scientific questions of interest.
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ARV [OMVARl  Additive vs cell-means
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Two-way ANOVA in R

tomato$Density = factor(tomato$Density)
m = 1lm(Yield~Variety*Density, tomato)
anova (m)

Analysis of Variance Table

Response: Yield

Analysis in R

Df Sum Sq Mean Sq F value Pr(>F)
Variety 2 327.60 163.799 103.3430 1.608e-12 **x
Density 3 86.69 28.896 18.2306 2.212e-06 **x
Variety:Density 6 8.03 1.339 0.8445 0.5484
Residuals 24 38.04 1.585
Signif. codes: O '"*¥*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

R0O9 - Analysis of Experiments with Two Factors

March 30, 2021

13 /49



Analysis in R

Variety comparison

library(emmeans)
emmeans (m, pairwise~Variety)

$emmeans

Variety emmean SE df lower.CL upper.CL
C 18.1 0.363 24 17.4 18.9
A 11.3 0.363 24 10.6 12.1
B 12.2 0.363 24 11.5 13.0

Results are averaged over the levels of: Density
Confidence level used: 0.95

$contrasts

contrast estimate SE df t.ratio p.value
© = 6.792 0.514 24 13.214 <.0001
C-B 5.917 0.514 24 11.512 <.0001
A-B -0.875 0.514 24 -1.702 0.2249

Results are averaged over the levels of: Density
P value adjustment: tukey method for comparing a family of 3 estimates
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Density comparison

emmeans (m, pairwise“Density)

$emmeans

Density emmean SE
10 11.5 0.42
20 14.4 0.42
30 15.8 0.42
40 13.9 0.42

df lower.CL upper.CL

10.
13.
14.

13

6
5
9

.0

12.3
15.3
16.6
14.8

Results are averaged over the levels of: Variety
Confidence level used: 0.95

$contrasts
contrast estimate
10 - 20 =22, il
10 - 30 -4.300
10 - 40 -2.433
20 - 30 -1.389
20 - 40 0.478
30 - 40 1.867

ocooooo

SE
593
593
593
593
593
593

df t.ratio
.905
.245
.100
.340
.805
.145

24
24
24
24
24
24

coocooAoOT

0003
0001
0022
1169
8514
0213

.value

Results are averaged over the levels of: Variety
P value adjustment: tukey method for comparing a family of 4 estimates

87Q@ISU
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emmeans (m, pairwise“Variety*Density)

$emmeans

Variety Density emmean

WraQ@WEFQWEQWEQ

10
10
10
20
20
20
30
30
30
40
40
40

16.

30

.20

0
0
0
0
]
0
0.
0
0
0
0
0

Analysis in R

SE df lower.CL upper.CL

N2
LT27
LT27
LT727
L727
L7127

727

.T727
.T727
.T727
.T727
.T727

Confidence level used: 0.95

$contrast
contrast

aacaacaacaaaaaq
o
o o
[
WEQWw> QW

)

10
10
20
20
20
30
30
30

estimate
o
7o
=il
3.
3.
-3.

1000
3667
8000
8667
6667
6333

24 14.80
24 7.70
24 7.43
24 16.60
24 10.93
24 11.13
24 18.43
24 11.40
24 13.00
24 16.67
24 9.30
24 11.27
t.ratio p.value
6.907 <.0001
7.166 <.0001
-1.751 0.8276
3.762 0.0356
3.567 0.0543
-3.535 0.0582
3.308 0.0932
1.751 0.8276

N
e
WWNO BB OO N ®
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Two-way ANOVA  [ISTTNINETY

Summary

@ Use emmeans to answer questions of scientific interest.
@ Check model assumptions

@ Consider alternative models, e.g. treating density as continuous
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Unbalanced design

Unbalanced design

Suppose for some reason that a variety B, density 30 sample was contaminated. Although you started

with a balanced design, the data is now unbalanced. Fortunately, we can still use the tools we have
used previously.
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Unbalanced design
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Unbalanced desi

Summary statistics

# A tibble: 12 x 5

# Groups: Variety [3]

Variety Density
<fct> <fct>
10
20
30
40

W ~NO U WN
TWWwWEEEE>QQQ0
N
S

<int>

n mean sd
<dbl> <dbl>
3 16.3 1.11
3 18.1 1.35
3 19.9 1.68
3 18.2 0.874
3 9.2 1.30
312.4 1.10
3 12.9 0.985
3 10.8 1.7
3 8.93 1.04
3 12.6 1.10
2 14.9 0.707
312.8 1.62
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Unbalanced desi Analysis in R

Two-way ANOVA in R

m = 1lm(Yield~Variety*Density, tomato_unbalanced)
anova (m)

Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr (>F)

Variety 2 329.99 164.994 102.343 3.552e-12 **x
Density 3 84.45 28.150 17.461 3.947e-06 **x
Variety:Density 6 8.80 1.467 0.910 0.5052
Residuals 23 37.08 1.612

Signif. codes: O '*¥*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1

(]
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Unbalanced desi Analysis in R

Variety comparison

emmeans (m, pairwise~Variety)

$emmeans

Variety emmean SE df lower.CL upper.CL
C 18.1 0.367 23 17.4 18.9
A 11.3 0.367 23 10.6 12.1
B 12.3 0.389 23 11.5 13.1

Results are averaged over the levels of: Density
Confidence level used: 0.95

$contrasts

contrast estimate SE df t.ratio p.value
CcC-A 6.792 0.518 23 13.102 <.0001
C-B 5.817 0.534 23 10.886 <.0001
A-B -0.975 0.534 23 -1.825 0.1839

Results are averaged over the levels of: Density
P value adjustment: tukey method for comparing a family of 3 estimates
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nbalanced desi Analysis in R

Density comparison

emmeans (m, pairwise“Density)

$emmeans

Density emmean SE
10 11.5 0.423
20 14.4 0.423
30 15.9 0.457
40 13.9 0.423

df lower.CL upper.CL
10.6
13.5
15.0
13.0

12.4
15.3
16.9
14.8

Results are averaged over the levels of: Variety
Confidence level used: 0.95

$contrasts
contrast estimate
10 - 20 =22, il
10 - 30 -4.433
10 - 40 -2.433
20 - 30 -1.522
20 - 40 0.478
30 - 40 2.000

ocooooo

SE
599
623
599
623
599
623

df t.ratio
.864
.116
.065
.443
.798
.210

23
23
23
23
23
23

coocooAoOT

0004
0001
0025
0967
8545
0189

.value

Results are averaged over the levels of: Variety
P value adjustment: tukey method for comparing a family of 4 estimates
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Unbalanced design Analysis in R

emmeans (m, pairwise“Variety*Density)

$emmeans

Variety Density emmean

WraQ@WEFQWEQWEQ

10
10
10
20
20
20
30
30
30
40
40
40

16.

30

.20

0
0
0
0
]
0
0.
0
0
0
0
0

SE df lower.CL upper.CL

.733
.733
.733
.733
.733
.733

733

.733
.898
.733
.733
.733

Confidence level used: 0.95

$contrast
contrast

aacaacaacaaaaaq
o
o o
[
WEQWw> QW

)

10
10
20
20
20
30
30
30

estimate
o
7o
=il
3.
3.
-3.

1000
3667
8000
8667
6667
6333

23 14.78
23 7.68
23 7.42
23 16.58
23 10.92
23 11.12
23 18.42
23 11.38
23 13.04
23 16.65
23 9.28
23 11.25
t.ratio p.value
6.849 <.0001
7.106 <.0001
-1.736 0.8341
3.730 0.0396
3.537 0.0597
-3.505 0.0638
3.280 0.1008
1.208 0.9828
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Unbalanced design Summary

Unbalanced Summary

The analysis can be completed just like the balanced design using emmeans to answer scientific
questions of interest.
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Incomplete design

Incomplete design

Suppose none of the samples from variety B, density 30 were obtained. Now the analysis becomes more
complicated.
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Incomplete design
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Incomplete desi

Summary statistics

# A tibble: 11 x §
# Groups: Variety [3]
Variety Density

<fct> <fct> <int>

10
20
30
40

RO ©O©ON®UNWN -
DWWwEEEEQQQQ
N
S

o

n mean sd
<dbl> <dbl>
3 16.3 1.11
3 18.1 1.35
3 19.9 1.68
3 18.2 0.874
3 9.2 1.30
312.4 1.10
3 12.9 0.985
3 10.8 1.7
3 8.93 1.04
3 12.6 1.10
3 12.8 1.62
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Incomplete design Treat as a One-way ANOVA

Treat as a One-way ANOVA

When the design is incomplete, use a one-way ANOVA combined with contrasts to answer questions of
interest. For example, to compare the average difference between B and C, we want to only compare at

densities 10, 20, and 40.

10 | 20 | 30 | 40

A M1l | H12 | 13 | H14
B | p21 | po2 H24
C | p31 | p32 | 133 | 134

Thus, the contrast is

Vo= %(NBl + pi32 4 praa) — 5 (21 + oo + pos)
3(p31 + p32 + p3a — pl21 — p22 — Ha4)

March 30, 2021 29 /49
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Incomplete design Treat as a One-way ANOVA

The Regression model

The regression model here considers variety-density combination as a single explanatory variable with

11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40. Let C40 be the reference
level. For observation i, let

@ Y be the yield
@ V; be the variety

@ D; be the density

The model is then V; 2 N(u;,02) and

ni = Bo
Y LBV, = A, Dy = 10)4821(V; = A, Dy = 20)+831(Vi = A, D; = 30) +B41(V; = A, D; — 40)
+B851(V; = B, D; = 10)+B61(V; = B, D; = 20) +B71(V; = B, D; = 40)
18s1(V; = C, D; = 10)+Bo1(V; = C, D; = 20)+B101(V; = C, D; = 30)
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b2l
Two-way ANOVA in R

m <- Im(Yield ~ Variety*Density, data=tomato_incomplete)
anova (m)

Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr (>F)

Variety 2 347.38 173.691 104.462 5.868e-12 **x*
Density 3 66.65 22.218 13.362 3.514e-05 **x*
Variety:Density 5 7.06 1.412  0.849 0.53

Residuals 22 36.58 1.663

Signif. codes: O 'x¥*' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

How can you tell the design is not complete?
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b2l
One-way ANOVA in R

m = Im(Yield~Variety:Density, tomato_incomplete)
anova (m)

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr (>F)
Variety:Density 10 421.09 42.109 25.326 8.563e-10 **x*
Residuals 22 36.58 1.663

Signif. codes: O '"*¥*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Analysis in R
Contrasts

m = 1m(Yield ~ VarietyDensity, tomato_incomplete)
em <- emmeans(m, ~ VarietyDensity)
contrast(em, method = list(

“"C-B" =c( 0, 0, O, O, -1, -1, iy iy iy @, B
Mg = g =il =il =iy =iy @y @ o, 1, 1, 1, 1)/4,
"B-A" = ¢( -1, -1, 0, -1, 1, 1, 1, 0, 0, 0, 0)/3)) W%
confint

contrast estimate SE df lower.CL upper.CL

C-B 6.078 0.608 22 4.817 7.34

C-A 6.792 0.526 22 5.700 7.88

B-A 0.633 0.608 22 -0.627 1.89

Confidence level used: 0.95
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Incomplete design Analysis in R

m = Im(Yield~Variety:Density, tomato_incomplete)
emmeans (m, pairwise“Variety:Density) #

$emmeans

Variety Density emmean

WrEraQFraQ@EQWEQ

10

16.

30

.20
.93

0
0
0
]
0
0.
0
0
0
0
0

744

.744
.744
.744
.744
.744

Confidence level used: 0.95

$contrast
contrast
C 10 - A
C 10 - B
c10-C
C 10 - A
C 10 - B
c10 -C
C 10 - A
cC10 -C

5]

estimate
7.1000
7.3667
-1.8000
3.8667
3.6667
-3.6333

22 14.
22 7o

t.ratio

-1.710

w
)
=
w

-3.451

w
N
N
©

-1.773

OO0 O0OO0O0OAAT

We

SE df lower.CL uppe:
.T44 6

.T44
.T44
.744
.744

7
66

value
.0001
.0001
8157
.0407
.0606
.0646
.1007
7829

uld have used the Var

r.Cl
17.

-
S
WWNBRONO OO N ®
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Incomplete design Summary

Summary

When dealing with an incomplete design, it is often easier to treat the analysis as a one-way ANOVA
and use contrasts to answer scientific questions of interest.
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Optimal yield

Now suppose you have the same data set, but your scientific question is different. Specifically, you are
interested in choosing a variety-density combination that provides the optimal yield.

You can use the ANOVA analysis to choose from amongst the 3 varieties and one of the 4 densities,
but there is no reason to believe that the optimal density will be one of those 4.
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Optimal yield
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Modeling
Modeling

Considering a single variety, if we assume a linear relationship between Yield (Y;) and Density (D;) then
the maximum Yield will occur at either —oco or +00 which is unreasonable. The easiest way to have a
maximum (or minimum) is to assume a quadratic relationship, e.g.

EY;] = pi = Bo + B1D;i + 52D¢2

Now we can incorporate Variety (V;) in many ways. Two options are parallel curves or completely
independent curves.
Parallel curves:

wi = Bo+BLD; + p2D?
+B831(Vy = A) + B41(V; = B)

Independent curves:
pi = Bo+B1D; + B2 D?
+B3L(V; = A) + B41(V; = B)

+851(V; = A)D; + Be1(V; = B)D;
+671(V; = A)D? + Bs1(V; = B)D?
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Optimal yield Modeling

No variety
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Optimal yield Modeling

Finding the maximum

For a particular variety, there will be an equation like

ElY;] = wi = Bo + 1 D; + B2D7?

where these 81 and (3 need not correspond to any particular 8, and (2 we have discussed thus far.

If B2 < 0, then the quadratic curve has a maximum and it occurs at —f;/2055.
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Optimal yield Analysis in R

No variety

Call:
Im(formula = Yield ~ Density + I(Demnsity~2), data = tomato)

Residuals:
Min 1Q Median 3Q Max
-4.898 -2.721 -1.320 3.364 6.109

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.744444 3.128242 1.836 0.0753
Density 0.684111 0.285384 2.397 0.0223 *
I(Density~2) -0.011944 0.005618 -2.126 0.0411 *

Signif. codes: O '*¥*' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.371 on 33 degrees of freedom

Multiple R-squared: 0.1854,Adjusted R-squared: 0.136
F-statistic: 3.755 on 2 and 33 DF, p-value: 0.03395
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Optimal yield Analysis in R

Parallel curves

Call:
Im(formula = Yield ~ Density + I(Density~2) + Variety, data = tomato)

Residuals:
Min 1Q Median 3Q Max
-2.3422 -0.9039 0.1744 0.8082 2.1828

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 9.980556 1.184193 8.428 1.61e-09 **x
Density 0.684111 0.104707 6.534 2.71e-07 **x
I(Density~2) -0.011944 0.002061 -5.794 2.21e-06 **x*
VarietyA -6.791667 0.504942 -13.450 1.76e-14 **x
VarietyB -5.916667  0.504942 -11.718 6.39e-13 *xx
Signif. codes: 0 '**x' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.237 on 31 degrees of freedom
Multiple R-squared: 0.897,Adjusted R-squared: 0.8837
F-statistic: 67.48 on 4 and 31 DF, p-value: 7.469e-15
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Optimal yield Analysis in R

Independent curves

Call:
Im(formula = Yield ~ Density * Variety + I(Density~2) * Variety,
data = tomato)

Residuals:
Min 1Q Median 3Q Max
-2.04500 -0.82125 -0.01417 0.94000 1.71000

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 11.808333  1.968364 5.999 2.12e-06 **x
Density 0.520167  0.179570  2.897 0.00739 **
VarietyA -8.458333  2.783687 -3.039 0.00523 **
VarietyB -9.733333 2.783687 -3.497 0.00165 **
I(Density~2) -0.008917 0.003535 -2.522 0.01787 *
Density:VarietyA 0.199167 0.253951 0.784 0.43971
Density:VarietyB 0.292667 0.253951 1.152 0.25924
VarietyA:I(Density~2) -0.004417 0.005000 -0.883 0.38482
VarietyB:I(Density~2) -0.004667 0.005000 -0.933 0.35889
Signif. codes: O '"*¥*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.225 on 27 degrees of freedom
Multiple R-squared: 0.912,Adjusted R-squared: 0.886
F-statistic: 34.99 on 8 and 27 DF, p-value: 2.678e-12
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Completely randomized design (CRD)

This semester, we have assumed a completely randomized design. As an example, consider 36 plots and

we are randomly assigning our variety-density combinations to the plots such that we have 3 reps of
each combination. The result may look something like this

A20

A10

B10

A30

A10

B30

B10

B20

B40

B40

B20

B30

A40

B40

B20

A20

A40
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Complete randomized block design (RBD)
A randomized block design is appropriate when there is a nuisance factor that you want to control for.

In our example, imagine you had 12 plots at 3 different locations and you expect these locations would
have impact on yield. A randomized block design might look like this.

B10 B40 C20 B40 A20 B30
C30 A30 C30 A30 Cc10 A30
C40 c10 C10 B10 A10 C30
A20 B20 A10 A20 B20 C40
B30 A40 B20 C40 B40 A40
A10 C20 B30 A40 C20 B10
Block 1 Block 2 Block 3
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RBD Analysis

Generally, you will want to model a randomized block design using an additive model for the treatment
and blocking factor. If you have the replication, you should test for an interaction. Let's compute the
degrees of freedom for the ANOVA tables for this current design considering the variety-density
combination as the treatment.

V+D+B T+B Cell-means
Factor df || Factor df || Factor df
Variety 2
Density 3 Treatment 11 || Treatment 11
Block 2 Block 2 Block 2

Treatment x Block 22
Error 28 || Error 22 || Error 0
Total 35 || Total 35 || Total 35

The cell-means model does not have enough degrees of
freedom to estimate the interaction because there is no
replication of the treatment within a block.

(STAT587@ISU) R09 - Analysis of Experiments with Two Factors March 30, 2021 46 /49



Why block?

Consider a simple experiment with 2 blocks each with 3 experimental units and 3 treatments (A, B, C).

Blocked Unblocked

A C A [

B B B B

A C C A
Block 1 Block 2 Block 1 Block 2

Let's consider 3 possible analyses:

@ Blocked experiment using an additive model for
treatment and block (RBD)

@ Unblocked experiment using only treatment (CRD)

@ Unblocked experiment using an additive model for
treatment and block
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Why block?

Now suppose, the true model is
tij = o+ T; + Bj
where T7 = Ty, = T3 and B; = 0 and By = 6.

In the Blocked experiment using an additive model for treatment and block, the expected treatment
differences to all be zero.

In the Unblocked design using only treatment, the expected
difference between treatments is

pe—pp =0 and  pc—pa=9/2.

In the Unblocked design using an additive model for
treatment and block, we would have an unbalanced design
and it would be impossible to compare B and C.
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Randomized complete block design Summary

Summary

Block what you can control; randomize what you cannot.
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