# R01 - Simple linear regression 

STAT 587 (Engineering)
lowa State University

March 30, 2021

## Telomere length

http://www.pnas.org/content/101/49/17312
People who are stressed over long periods tend to look haggard, and it is commonly thought that psychological stress leads to premature aging [as measured by decreased telomere length]
examine the importance of ... caregiving stress (...number of years since a child's diagnosis [of a chronic disease]) [on telomere length]

Telomere length values were measured from DNA by a quantitative $P C R$ assay that determines the relative ratio of telomere repeat copy number to single-copy gene copy number ( $T / S$ ratio) in experimental samples as compared with a reference DNA sample.

## Data

Telomere length vs years post diagnosis


## Data with regression line

Telomere length vs years post diagnosis


## Simple Linear Regression

The simple linear regression model is

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

where $Y_{i}$ and $X_{i}$ are the response and explanatory variable, respectively, for individual $i$. Terminology (all of these are equivalent):

| response | explanatory |
| :--- | :--- |
| outcome | covariate |
| dependent | independent |
| endogenous | exogenous |

## Simple linear regression - visualized

Simple linear regression model


Explanatory variable

## Parameter interpretation

Recall:

$$
E\left[Y_{i} \mid X_{i}=x\right]=\beta_{0}+\beta_{1} x \quad \operatorname{Var}\left[Y_{i} \mid X_{i}=x\right]=\sigma^{2}
$$

- If $X_{i}=0$, then $E\left[Y_{i} \mid X_{i}=0\right]=\beta_{0}$.
$\beta_{0}$ is the expected response when the explanatory variable is zero.
- If $X_{i}$ increases from $x$ to $x+1$, then

$$
\begin{aligned}
E\left[Y_{i} \mid X_{i}=x+1\right] & =\beta_{0}+\beta_{1} x+\beta_{1} \\
-E\left[Y_{i} \mid X_{i}=x\right] & =\beta_{0}+\beta_{1} x \\
\hline & =\beta_{1}
\end{aligned}
$$

$\beta_{1}$ is the expected increase in the response for each unit increase in the explanatory variable.

- $\sigma$ is the standard deviation of the response for a fixed


## Simple linear regression - visualized

Simple linear regression model


Remove the mean:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+e_{i} \quad e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

So the error is

$$
e_{i}=Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)
$$

which we approximate by the residual

$$
r_{i}=\hat{e}_{i}=Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}\right)
$$

The least squares (minimize $\sum_{i=1}^{n} r_{i}^{2}$ ), maximum likelihood, and Bayesian estimators (prior $1 / \sigma^{2}$ ) are

$$
\begin{aligned}
\hat{\beta}_{1} & =S X Y / S X X \\
\hat{\beta}_{0} & =\bar{Y}-\hat{\beta}_{1} \bar{X} \\
\hat{\sigma}^{2} & =S S E /(n-2) \quad d f=n-2 \\
\bar{X} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
\bar{Y} & =\frac{1}{n} \sum_{i=1}^{n} Y_{i} \\
S X Y & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
S X X & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
S S E & =\sum_{i=1}^{n} r_{i}^{2}
\end{aligned}
$$

## Residuals

Telomere length vs years post diagnosis


## Residuals

Telomere length vs years post diagnosis


How certain are we about $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ ?

We quantify this uncertainty using their standard errors (or posterior scale parameters):

$$
\begin{array}{rlrl}
S E\left(\hat{\beta}_{0}\right) & =\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{(n-1) s_{X}^{2}}} & & d f=n-2 \\
S E\left(\hat{\beta}_{1}\right) & =\hat{\sigma} \sqrt{\frac{1}{(n-1) s_{X}^{2}}} & & d f=n-2 \\
s_{X}^{2} & =S X X /(n-1) & & \\
s_{Y}^{2} & =S Y Y /(n-1) & & \\
S Y Y & =\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & & \\
r_{X Y} & =\frac{S X Y /(n-1)}{s_{X} s_{Y}} & & \text { correlation coefficient } \\
R^{2} & =r_{X Y}^{2}=\frac{S S T-S S E}{S S T} & \text { coefficient of determin } \\
S S T & =S Y Y=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} &
\end{array}
$$

The coefficient of determination $\left(R^{2}\right)$ is the proportion of

## Default Bayesian analysis of the simple linear regression model

If we assume the default prior $p\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) \propto 1 / \sigma^{2}$, then the marginal posteriors for the mean parameters are

$$
\beta_{j} \mid y \sim t_{n-2}\left(\hat{\beta}_{j}, S E\left(\hat{\beta}_{j}\right)^{2}\right) .
$$

We can construct a $100(1-a) \%$ two-sided credible interval for $\beta_{j}$ via

$$
\hat{\beta}_{j} \pm t_{n-2,1-a / 2} S E\left(\hat{\beta}_{j}\right)
$$

where $P\left(T_{n-2}<t_{n-2,1-a / 2}\right)=1-a / 2$ for $T_{n-2} \sim t_{n-2}$.
We can compute posterior probabilities via

$$
\begin{aligned}
& P\left(\beta_{j}<b_{j} \mid y\right)=P\left(T_{n-2}<\frac{\hat{\beta}_{j}-b_{j}}{S E\left(\hat{\beta}_{j}\right)}\right) \\
& P\left(\beta_{j}>b_{j} \mid y\right)=P\left(T_{n-2}>\frac{\hat{\beta}_{j}-b_{j}}{S E\left(\hat{\beta}_{j}\right)}\right) .
\end{aligned}
$$

## $p$-values and confidence interval

We can construct a $100(1-a) \%$ two-sided confidence interval for $\beta_{j}$ via

$$
\hat{\beta}_{j} \pm t_{n-2,1-a / 2} S E\left(\hat{\beta}_{j}\right)
$$

We can compute one-sided $p$-values,
e.g. $H_{0}: \beta_{j} \geq b_{j}$ vs $H_{A}: \beta_{j}<b_{j}$ has

$$
p \text {-value }=P\left(T_{n-2}>\frac{\hat{\beta}_{j}-b_{j}}{S E\left(\hat{\beta}_{j}\right)}\right)
$$

and $H_{0}: \beta_{j} \leq b_{j}$ vs $H_{A}: \beta_{j}>b_{j}$ has

$$
p \text {-value }=P\left(T_{n-2}<\frac{\hat{\beta_{1}}-b_{j}}{S E\left(\hat{\beta}_{j}\right)}\right)
$$

software default is usually $b_{j}=0$.

## Calculations "by hand" in R

```
n = nrow(Telomeres)
Xbar = mean(Telomeres$years)
Ybar = mean(Telomeres$telomere.length)
s_X = sd(Telomeres$years)
S_Y = sd(Telomeres$telomere.length)
r_XY = cor(Telomeres$telomere.length, Telomeres$years)
SXX = (n-1)*S_X^2
SYY = (n-1)*S_Y^2
SXY = (n-1)*s_X*s_Y*r_XY
beta1 = SXY/SXX
beta0 = Ybar - beta1 * Xbar
R2 = r_XY^2
SSE = SYY*(1-R2)
sigma2 = SSE/(n-2)
sigma = sqrt(sigma2)
SE_beta0 = sigma*sqrt(1/n + Xbar^2/((n-1)*s_X^2))
SE_beta1 = sigma*sqrt( }1/((n-1)*s_X^2)
```


## Calculations "by hand" in R (continued)

```
# 95% CI for beta0
beta0 +c(-1,1)*qt(.975, df = n-2) * SE_beta0
[1] 1.251761 1.483603
# 95% CI for beta1
beta1 + c(-1,1)*qt(.975, df = n-2) * SE_beta1
[1] -0.044785794 -0.007962836
# pvalue for HO: betaO >= 0 and P(betaO<0/y)
pt(beta0/SE_beta0, df = n-2)
[1] 1
# pvalue for H1: beta1 >= 0 and P(beta1<0/y)
pt(beta1/SE_beta1, df = n-2)
[1] 0.003102353
```


## Calculations by hand

$$
\begin{aligned}
& S X X=(n-1) s_{x}^{2}=(39-1) \times 2.9354274^{2}=327.4358974 \\
& S Y Y=(n-1) s_{Y}^{2}=(39-1) \times 0.1797731^{2}=1.2280974 \\
& S X Y=(n-1) s_{X} s_{Y} r_{X Y}=(39-1) \times 2.9354274 \times 0.1797731 \times-0.4306534=-8.6358974 \\
& \hat{\beta}_{1}=S X Y / S X X=-8.6358974 / 327.4358974=-0.0263743 \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=1.2202564-(-0.0263743) \times 5.5897436=1.3676821 \\
& R^{2}=r_{X Y Y}^{2}=(-0.4306534)^{2}=0.1854624 \\
& S S E=S Y Y\left(1-R^{2}\right)=1.2280974(1-0.1854624)=1.0003316 \\
& \hat{\sigma}^{2}=S S E /(n-2)=1.0003316 /(39-2)=0.027036 \\
& \hat{\sigma}=\sqrt{\hat{\sigma}^{2}}=\sqrt{0.027036}=0.1644262 \\
& S E\left(\hat{\beta}_{0}\right)=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{(n-1) s_{x}^{2}}}=0.1644262 \sqrt{\frac{1}{39}+\frac{5.5897436^{2}}{(39-1) * 2.9354274^{2}}}=0.0572111 \\
& S E\left(\hat{\beta}_{1}\right)=\hat{\sigma} \sqrt{\frac{1}{(n-1) s_{x}^{2}}}=0.1644262 \sqrt{\frac{1}{(39-1) * 2.9354274^{2}}}=0.0090867 \\
& p_{H_{A}}: \beta_{0} \neq 0=2 P\left(T_{n-2}<-\left|\frac{\hat{\beta}_{0}}{S E\left(\hat{\beta}_{0}\right)}\right|\right)=2 P\left(t_{37}<-23.9058799\right)=4.2740348 \times 10^{-24} \\
& p_{H A}: \beta_{1} \neq 0=2 P\left(T_{n-2}<-\left|\frac{\hat{\beta}_{1}}{S E\left(\hat{\beta}_{1}\right)}\right|\right)=2 P\left(t_{37}<-2.9025065\right)=0.0062047 \\
& C I_{95 \%} \beta_{0}=\hat{\beta}_{0} \pm t_{n-2,1-a / 2 S E\left(\hat{\beta}_{0}\right)} \\
& C I_{95 \%} .3676821 \pm 2.0261925 \times 0.0572111=(1.2517613,1.4836028) \\
&=\hat{\beta}_{1} \pm t_{n-2,1-a / 2} S E\left(\hat{\beta}_{1}\right) \\
&=-0.0263743 \pm 2.0261925 \times 0.0090867=(-0.0447858,-0.0079628)
\end{aligned}
$$

## Regression in $R$

```
m = lm(telomere.length ~ years, Telomeres)
summary(m)
Call:
lm(formula = telomere.length ~ years, data = Telomeres)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.367682 0.057211 23.906 <2e-16 ***
years -0.026374 0.009087 -2.903 0.0062 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1644 on 37 degrees of freedom
Multiple R-squared: 0.1855,Adjusted R-squared: 0.1634
F-statistic: 8.425 on 1 and 37 DF, p-value: 0.006205
confint(m)
    2.5% 97.5 %
(Intercept) 1.25176134 1.483602799
years -0.04478579 -0.007962836
```


## Conclusion

Telomere ratio at the time of diagnosis of a child's chronic illness is estimated to be 1.37 with a $95 \%$ credible interval of $(1.25,1.48)$. For each year since diagnosis, the telomere ratio decreases on average by 0.026 with a $95 \%$ credible interval of $(0.008,0.045)$. The proportion of variability in telomere length described by a linear regression on years since diagnosis is 18.5\%.
http://www.pnas.org/content/101/49/17312
The correlation between chronicity of caregiving and mean telomere length is -0.445 ( $P$
$<0.01$ ). [ $R^{2}=0.198$ was shown in the plot.]

Remark I'm guessing our analysis and that reported in the paper don't match exactly due to a discrepancy in the data.

## Summary

- The simple linear regression model is

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

where $Y_{i}$ and $X_{i}$ are the response and explanatory variable, respectively, for individual $i$.

- Know how to use R to obtain $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\sigma}^{2}, R^{2}, p$-values, Cl , etc.
- Interpret regression output:
- $\beta_{0}$ is the expected value for the response when the explanatory variable is 0 .
- $\beta_{1}$ is the expected increase in the response for each unit increase in the explanatory variable.
- $\sigma$ is the standard deviation of responses around their mean.
- $R^{2}$ is the proportion of the total variation of the response variable explained by the model.


## R01a - Simple linear regression:

## Choosing explanatory variables

## STAT 587 (Engineering) <br> Iowa State University

March 30, 2021

## Simple linear regression

Let

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} f\left(X_{i}\right), \sigma^{2}\right) .
$$

Possible choices for $f$ :

- quadratic: $f(x)=x^{2}$
- logarithmic: $f(x)=\log (x)$
- centered: $f(x)=x-m$
- scaled: $f(x)=x / s$


## Quadratic relationship




## Logarithmic relationship




## Shifting the intercept

The intercept is the expected response when the explanatory variable is zero. If we use

$$
f(x)=x-m,
$$

then the new intercept is the expected response when the explanatory variable is $m$.

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1}(x-m)=\tilde{\beta}_{0}+\tilde{\beta}_{1} x
$$

so our new parameters for the mean are

- slope $\tilde{\beta}_{1}=\beta_{1}$ (unchanged) but
- intercept $\tilde{\beta}_{0}=\left(\beta_{0}-m \beta_{1}\right)$.


## Telomere data




## Telomere data: shifting the intercept

```
m0 = lm(telomere.length ~ years , abd::Telomeres)
m4 = lm(telomere.length ~ I(years-5), abd::Telomeres)
coef(m0)
(Intercept) years
1.36768207 -0.02637431
coef(m4)
    (Intercept) I(years - 5)
    1.23581049 -0.02637431
confint(m0)
    2.5% 97.5%
(Intercept) 1.25176134 1.483602799
years -0.04478579 -0.007962836
confint(m4)
    2.5% 97.5%
(Intercept) 1.18136856 1.290252429
I (years - 5) -0.04478579 -0.007962836
```


## Rescaling the slope

The slope is the expected increase in the response when the explanatory variable increases by 1. If we use

$$
f(x)=x / s
$$

then the new slope is the expected increase in the response when the explanatory variable increases by $s$.

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1}(x / s)=\tilde{\beta}_{0}+\tilde{\beta}_{1} x
$$

so our new parameters are

- intercept $\tilde{\beta}_{0}=\beta_{0}$ (unchanged) but
- slope $\tilde{\beta}_{1}=\beta_{1} / s$.


## Telomere data: rescaling the slope




## Telomere data: rescaling the slope

```
m0 = lm(telomere.length ~ years , abd::Telomeres)
m4 = lm(telomere.length ~ I(years/2), abd::Telomeres)
coef(m0)
(Intercept) years
1.36768207 -0.02637431
coef(m4)
(Intercept) I(years/2)
1.36768207 -0.05274863
confint(m0)
    2.5% 97.5 %
(Intercept) 1.25176134 1.483602799
years -0.04478579 -0.007962836
confint(m4)
    2.5% 97.5%
(Intercept) 1.25176134 1.48360280
I(years/2) -0.08957159 -0.01592567
```


## Summary

Let

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} f\left(X_{i}\right), \sigma^{2}\right) .
$$

Choose $f$ based on

- Scientific understanding
- Interpretability
- Diagnostics


# R01b - Simple linear regression 

## Uncertainty and prediction intervals

STAT 587 (Engineering)<br>Iowa State University

March 30, 2021

## Uncertainty when explanatory variable is zero

Let

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

then

$$
E\left[Y_{i} \mid X_{i}=0\right]=\beta_{0}
$$

and a $100(1-a) \%$ credible/confidence interval is

$$
\hat{\beta}_{0} \pm t_{n-2,1-a / 2} \hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{(n-1) s_{x}^{2}}}
$$

## Telomere data: uncertainty

Telomere length vs years post diagnosis


## Uncertainty when explanatory variable is $x$

Let

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

then

$$
E\left[Y_{i} \mid X_{i}=x\right]=\beta_{0}+\beta_{1} x
$$

and a $100(1-a) \%$ credible/confidence interval is

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x \pm t_{n-2,1-a / 2} \hat{\sigma} \sqrt{\frac{1}{n}+\frac{(\bar{x}-x)^{2}}{(n-1) s_{x}^{2}}}
$$

## Telomere data: uncertainty

Telomere length vs years post diagnosis


## Prediction intervals

Let

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

then

$$
E\left[Y_{i} \mid X_{i}=x\right]=\beta_{0}+\beta_{1} x
$$

and a $100(1-a) \%$ prediction interval is

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x \pm t_{n-2,1-a / 2} \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{(\bar{x}-x)^{2}}{(n-1) s_{x}^{2}}}
$$

## Telomere data: prediction intervals

Telomere length vs years post diagnosis


## Summary

Two main types of uncertainty intervals:

- where is the line?

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x \pm t_{n-2,1-a / 2} \hat{\sigma} \sqrt{\frac{1}{n}+\frac{(\bar{x}-x)^{2}}{(n-1) s_{x}^{2}}}
$$

- where will a new data point fall?

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x \pm t_{n-2,1-a / 2} \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{(\bar{x}-x)^{2}}{(n-1) s_{x}^{2}}}
$$

Both intervals are confidence and credible intervals.

# R02 - Regression diagnostics 

STAT 587 (Engineering)
lowa State University

November 1, 2021

## All models are wrong!

## George Box (Empirical Model-Building and Response Surfaces, 1987):

All models are wrong, but some are useful.
http://stats.stackexchange.com/questions/57407/what-is-the-meaning-of-all-models-are-wrong-but-some-are-useful
"All models are wrong" that is, every model is wrong because it is a simplification of reality. Some models, especially in the "hard" sciences, are only a little wrong. They ignore things like friction or the gravitational effect of tiny bodies. Other models are a lot wrong - they ignore bigger things.
"But some are useful" - simplifications of reality can be quite useful. They can help us explain, predict and understand the universe and all its various components.

This isn't just true in statistics! Maps are a type of model; they are wrong. But good maps are very useful.

## Simple Linear Regression

The simple linear regression model is

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

this can be rewritten as

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+e_{i} \quad e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) .
$$

Key assumptions are:

- The errors are
- normally distributed,
- have constant variance, and
- are independent of each other.
- There is a linear relationship between the expected response and the explanatory variables.


## Multiple Regression

The multiple regression model is

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}+e_{i} \quad e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) .
$$

Key assumptions are:

- The errors are
- normally distributed,
- have constant variance, and
- are independent of each other.
- There is a specific relationship between the expected response and the explanatory variables.


## Telomere data

Telomere length vs years post diagnosis


## Case statistics

To evaluate these assumptions, we will calculate a variety of case statistics:

- Leverage
- Fitted values
- Residuals
- Standardized residuals
- Studentized residuals
- Cook's distance


## Default diagnostic plots in R



Fitted values

## Cook's distance




Theoretical Quantiles


Fitted values

## Leverage

The leverage ( $0 \leq h_{i} \leq 1$ ) of an observation $i$ is a measure of how far away that observation's explanatory variable value is from the other observations. Larger leverage indicates a larger potential influence of a single observation on the regression model.
In simple linear regression,

$$
h_{i}=\frac{1}{n}+\frac{\left(\bar{x}-x_{i}\right)^{2}}{(n-1) s_{X}^{2}}
$$

which is involved in the standard error for the line for a location $x_{i}$.

The variability in the residuals is a function of the leverage, i.e.

$$
\operatorname{Var}\left[r_{i}\right]=\sigma^{2}\left(1-h_{i}\right)
$$

## Telomere data

| years | leverage |
| ---: | ---: |
| 12 | 0.15113547 |
| 10 | 0.08504307 |
| 9 | 0.06115897 |
| 8 | 0.04338293 |
| 7 | 0.03171496 |
| 6 | 0.02615505 |
| 5 | 0.02670321 |
| 4 | 0.03335944 |
| 3 | 0.04612373 |
| 2 | 0.06499608 |
| 1 | 0.08997651 |
| 1 | 0.08997651 |

## Residuals and Fitted values

A regression model can be expressed as

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right) \quad \text { and } \quad \mu_{i}=\beta_{0}+\beta_{1} X_{i}
$$

A fitted value $\hat{Y}_{i}$ for an observation $i$ is

$$
\hat{Y}_{i}=\hat{\mu}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
$$

and the residual is

$$
r_{i}=Y_{i}-\hat{Y}_{i}
$$

## Standardized residuals

Often we will standardize residuals, i.e.

$$
\frac{r_{i}}{\sqrt{\widehat{\operatorname{Var}\left[r_{i}\right]}}}=\frac{r_{i}}{\hat{\sigma} \sqrt{1-h_{i}}}
$$

If $\left|r_{i}\right|$ is large, it will have a large impact on
$\hat{\sigma}^{2}=\sum_{i=1}^{n} r_{i}^{2} /(n-2)$. Thus, we can calculate an externally studentized residual

$$
\frac{r_{i}}{\hat{\sigma}_{(i)} \sqrt{1-h_{i}}}
$$

where $\hat{\sigma}_{(i)}^{2}=\sum_{j \neq i} r_{j}^{2} /(n-3)$.
Both of these residuals can be compared to a standard normal distribution.

## Telomere data: residuals

|  | years telomere.length | leverage | residual | standardized | studentized |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 1.63 | 0.08997651 | 0.288692247 | 1.84050794 | 1.90475158 |
| 2 | 1 | 1.24 | 0.08997651 | -0.101307753 | -0.64587021 | -0.64070443 |
| 3 | 1 | 1.33 | 0.08997651 | -0.011307753 | -0.07209064 | -0.07111476 |
| 4 | 2 | 1.50 | 0.06499608 | 0.185066562 | 1.16399233 | 1.16977226 |
| 5 | 2 | 1.42 | 0.06499608 | 0.105066562 | 0.66082533 | 0.65571510 |
| 6 | 2 | 1.36 | 0.06499608 | 0.045066562 | 0.28345009 | 0.27989750 |
|  | 2 | 1.32 | 0.06499608 | 0.005066562 | 0.03186659 | 0.03143344 |
| 8 | 3 | 1.47 | 0.04612373 | 0.181440877 | 1.12984272 | 1.13420749 |
| 9 | 2 | 1.24 | 0.06499608 | -0.074933438 | -0.47130041 | -0.46628962 |
| 10 | 4 | 1.51 | 0.03335944 | 0.247815192 | 1.53293696 | 1.56251168 |
| 11 | 4 | 1.31 | 0.03335944 | 0.047815192 | 0.29577555 | 0.29209673 |
| 12 | 5 | 1.36 | 0.02670321 | 0.124189507 | 0.76558098 | 0.76121769 |
| 13 | 5 | 1.34 | 0.02670321 | 0.104189507 | 0.64228860 | 0.63711129 |
| 14 | 3 | 0.99 | 0.04612373 | -0.298559123 | -1.85914473 | -1.92601533 |
| 15 | 4 | 1.03 | 0.03335944 | -0.232184808 | -1.43625042 | -1.45793267 |
| 16 | 4 | 0.84 | 0.03335944 | -0.422184808 | -2.61155376 | -2.85227987 |
| 17 | 5 | 0.94 | 0.02670321 | -0.295810493 | -1.82355895 | -1.88546999 |
| 18 | 5 | 1.03 | 0.02670321 | -0.205810493 | -1.26874325 | -1.27962563 |
| 19 | 5 | 1.14 | 0.02670321 | -0.095810493 | -0.59063518 | -0.58536500 |
| 20 | 6 | 1.17 | 0.02615505 | -0.039436179 | -0.24304058 | -0.23992534 |
| 21 | 6 | 1.23 | 0.02615505 | 0.020563821 | 0.12673244 | 0.12503525 |
| 22 | 6 | 1.25 | 0.02615505 | 0.040563821 | 0.24999011 | 0.24679724 |
| 23 | 6 | 1.31 | 0.02615505 | 0.100563821 | 0.61976313 | 0.61452870 |
| 24 | 6 | 1.34 | 0.02615505 | 0.130563821 | 0.80464964 | 0.80073848 |
| 25 | 7 | 1.36 | 0.03171496 | 0.176938136 | 1.09357535 | 1.09656310 |
| 26 | 6 | 1.22 | 0.02615505 | 0.010563821 | 0.06510360 | 0.06422148 |

## Cook's distance

The Cook's distance for an observation $i\left(d_{i}>0\right)$ is a measure of how much the regression parameter estimates change when that observation is included versus when it is excluded.

Operationally, we might be concerned when $d_{i}$ is

- larger than 1 or
- larger then $4 / n$.


## Residuals vs fitted values



## QQ-plot



## Absolute standardized residuals vs fitted values



## Cook's distance



## Residuals vs leverage



## Cooks' distance vs leverage



This plot is pretty confusing.

## Additional plots

Default plots do not assess all model assumptions.
Two additional suggested plots:

- Residuals vs row number
- Residuals vs (each) explanatory variable


## Plot residuals vs row number (index)

```
plot(residuals(m))
```



[^0]
## Residual vs explanatory variable

```
plot(Telomeres$years, residuals(m))
```



[^1]
## ggResidpanel: R default

```
resid_panel(m, plots = "R")
```






## ggResidpanel: R all plots

```
resid_panel(m, plots = c("qq", "hist", "resid", "index", "yvp", "cookd"),
bins = 30, smoother = TRUE, qqbands = TRUE,
type = "standardized") # what I was calling studentized
```






Response vs Predi
COOK's D Plot



## ggResidpanel: R explanatory

```
resid_xpanel(m)
```

Plots of Residuals vs Predictor Variables


## ggResidpanel: SAS

```
resid_panel(m, plots = "SAS")
```



Histogram



Boxplot


## Summary

Case statistics:

- Fitted values
- Leverage
- Residuals
- Standardized residuals
- Studentized residuals
- Cook's distance

Model assumptions:

- Normality
- Constant variance
- Independence
- Linearity


# R03 - Regression: using logarithms 

STAT 587 (Engineering)
lowa State University

March 30, 2021

Parameter interpretation in regression

If

$$
E[Y \mid X]=\beta_{0}+\beta_{1} X
$$

then

- $\beta_{0}$ is the expected response when $X$ is zero and
- $d \beta_{1}$ is the expected change in the response for a $d$ unit change in the explanatory variable.

For the following discussion,

- $Y$ is always going to be the original response and
- $X$ is always going to be the original explanatory variable.


## Corn yield example

Suppose

- $Y$ is corn yield (bushels/acre)
- $X$ is fertilizer level in lbs/acre

Then, if

$$
E[Y \mid X]=\beta_{0}+\beta_{1} X
$$

- $\beta_{0}$ is the expected corn yield (bushels/acre) when fertilizer level is zero and
- $d \beta_{1}$ is the expected change in corn yield (bushels/acre) when fertilizer is increased by $d$ lbs/acre.


## Regression with logarithms

Regression models using logarithms


## Response is logged

If

$$
E[\log (Y) \mid X]=\beta_{0}+\beta_{1} X,
$$

then we have

$$
\operatorname{Median}[Y \mid X]=e^{\beta_{0}+\beta_{1} X}=e^{\beta_{0}} e^{\beta_{1} X}
$$

then

- $e^{\beta_{0}}$ is the median of $Y$ when $X$ is zero
- $e^{d \beta_{1}}$ is the multiplicative change in the median of $Y$ for a $d$ unit change in the explanatory variable.


## Response is logged

Let be $Y$ is corn yield (bushels/acre) and $X$ is fertilizer level in lbs/acre. If we assume

$$
E[\log (Y) \mid X]=\beta_{0}+\beta_{1} X
$$

then

$$
\operatorname{Median}[Y \mid X]=e^{\beta_{0}} e^{\beta_{1} X}
$$

- $e^{\beta_{0}}$ is the median corn yield (bushels/acre) when fertilizer level is 0 and
- $e^{d \beta_{1}}$ is the multiplicative change in median corn yield (bushels/acre) when fertilizer is increased by $d$ lbs/acre.


## Response is logged



## Explanatory variable is logged

If

$$
E[Y \mid X]=\beta_{0}+\beta_{1} \log (X)
$$

then,

- $\beta_{0}$ is the expected response when $X$ is 1 and
- $\beta_{1} \log (d)$ is the expected change in the response when $X$ increases multiplicatively by $d$, e.g.
- $\beta_{1} \log (2)$ is the expected change in the response for each doubling of $X$ or
- $\beta_{1} \log (10)$ is the expected change in the response for each ten-fold increase in $X$.


## Explanatory variable is logged

Suppose

- $Y$ is corn yield (bushels/acre)
- $X$ is fertilizer level in lbs/acre

If

$$
E[Y \mid X]=\beta_{0}+\beta_{1} \log (X)
$$

then

- $\beta_{0}$ is the expected corn yield (bushels/acre) when fertilizer amount is 1 lb /acre and
- $\beta_{1} \log (2)$ is the expected change in corn yield when fertilizer amount is doubled.


## Explanatory variable is logged



## Both response and explanatory variable are logged

If

$$
E[\log (Y) \mid X]=\beta_{0}+\beta_{1} \log (X)
$$

then

$$
\operatorname{Median}[Y \mid X]=e^{\beta_{0}} X^{\beta_{1}}
$$

and thus

- $e^{\beta_{0}}$ is the median of $Y$ when $X$ is 1 and
- $d^{\beta_{1}}$ is the multiplicative change in the median of the response when $X$ increases multiplicatively by $d$, e.g.
- $2^{\beta_{1}}$ is the multiplicative change in the median of the response for each doubling of $X$ or
- $10^{\beta_{1}}$ is the multiplicative change in the median of the response for each ten-fold increase in $X$.


## Both response and explanatory variables are logged

Suppose

- $Y$ is corn yield (bushels/acre)
- $X$ is fertilizer level in lbs/acre

If

$$
E[\log (Y) \mid X]=\beta_{0}+\beta_{1} \log (X) \quad \text { or } \quad \text { Median }[Y \mid X]=e^{\beta_{0}} e^{\beta_{1} \log (X)}=e^{\beta_{0}} X^{\beta_{1}}
$$

then

- $e^{\beta_{0}}$ is the median corn yield (bushels/acre) at 1 $\mathrm{lb} /$ acre of fertilizer and
- $2^{\beta_{1}}$ is the multiplicative change in median corn yield (bushels/acre) when fertilizer is doubled.


## Both response and explanatory variables are logged



## Why use logarithms

The most common transformation of either the response or explanatory variable(s) is to take logarithms because

- linearity will often then be approximately true,
- the variance will likely be approximately constant,
- influence of some observations may decrease, and
- there is a (relatively) convenient interpretation.


## Summary of interpretations when using logarithms

- When using the log of the response,
- $\beta_{0}$ determines the median response
- $\beta_{1}$ determines the multiplicative change in the median response
- When using the log of the explanatory variable $(X)$,
- $\beta_{0}$ determines the response when $X=1$
- $\beta_{1}$ determines the change in the response when there is a multiplicative increase in $X$


## Constructing credible intervals

Recall the model

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

Let $(L, U)$ be a $100(1-a) \%$ credible interval for $\beta$.
For ease of interpretation, it is often convenient to calculate functions of $\beta$, e.g.

$$
f(\beta)=d \beta \quad \text { and } \quad f(\beta)=e^{\beta}
$$

A $100(1-a) \%$ credible interval for $f(\beta)$ (when $f$ is monotonic) is

$$
(f(L), f(U))
$$

## Breakdown times

In an industrial laboratory, under uniform conditions, batches of electrical insulating fluid were subjected to constant voltages (kV) until the insulating property of the fluids broke down. Seven different voltage levels were studied and the measured responses were the times (minutes) until breakdown.

The Statistical
Sleuth

$A$ Counctin Mc abd
summary (Sleuth3: :case0802)

| Time |  | Voltage |  | Group |
| :--- | ---: | :--- | :--- | :--- |
| Min. $:$ | 0.090 | Min. $: 26.00$ | Group1: 3 |  |
| 1st Qu.: | 1.617 | 1st Qu. $: 31.50$ | Group2: 5 |  |
| Median : | 6.925 | Median $: 34.00$ | Group3:11 |  |
| Mean $:$ | 98.558 | Mean | $: 33.13$ | Group4:15 |
| 3rd Qu.: | 38.383 | 3rd Qu.:36.00 | Group5:19 |  |
| Max. $: 2323.700$ | Max. $: 38.00$ | Group6:15 |  |  |
|  |  |  |  | Group7:8 |

## Insulating fluid breakdown

Insulating fluid breakdown


## Insulating fluid breakdown

Insulating fluid breakdown


## Run the regression and look at diagnostics



## Logarithm of time (response)

Insulating fluid breakdown


## Logarithm of time (response): residuals




COOK's D Plot



## Summary

```
m <- lm(log(Time) ~ I(Voltage-30), Sleuth3::case0802)
exp(m$coefficients)
    (Intercept) I(Voltage - 30)
    41.86752 0.60208
exp(confint(m))
    2.5 % 97.5 %
(Intercept) 25.2582342 69.3987157
I(Voltage - 30) 0.5370152 0.6750281
```

- At 30 kV , the median breakdown time is estimated to be 42 minutes with a $95 \%$ credible interval of $(25,69)$.
- Each 1 kV increase in voltage was associated with a $40 \%(32 \%, 46 \%)$ reduction in median breakdown time.


# R04 - Regression with Categorical Explanatory Variables 

STAT 587 (Engineering)
lowa State University

March 30, 2021

## Binary explanatory variable

Recall the simple linear regression model

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

If we have a binary explanatory variable, i.e. the explanatory variable only has two levels say level $A$ and level $B$, we can code it as

$$
X_{i}=\mathrm{I}(\text { observation } i \text { is level } \mathrm{A})
$$

where I (statement) is an indicator function that is 1 when statement is true and 0 otherwise. Then

- $\beta_{0} \quad$ is the expected response for level $B$,
- $\beta_{0}+\beta_{1}$ is the expected response for level A , and
- $\beta_{1}$ is the expected difference in response (level A minus level B).


## Mice lifetimes

Sleuth3: :case0501



## Regression model for mice lifetimes

Let

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

where $Y_{i}$ is the lifetime of the $i$ th mouse and

$$
X_{i}=\mathrm{I}\left(\text { Diet }_{i}=\mathrm{N} / \mathrm{R} 50\right)
$$

then
$E[$ Lifetime $\mid$ R/R50 $]=E\left[Y_{i} \mid X_{i}=0\right]=\beta_{0}$
$E[$ Lifetime $\mid \mathrm{N} / \mathrm{R} 50]=E\left[Y_{i} \mid X_{i}=1\right]=\beta_{0}+\beta_{1}$
and
$E$ [Lifetime difference]
$=E[$ Lifetime $\mid \mathrm{N} / \mathrm{R} 50]-E[$ Lifetime $\mid \mathrm{R} / \mathrm{R} 50]$
$=\left(\beta_{0}+\beta_{1}\right)-\beta_{0}=\beta_{1}$.

```
R code
case0501$X <- ifelse(case0501$Diet == "N/R50", 1, 0)
(m <- lm(Lifetime ~ X, data = case0501, subset = Diet %in% c("R/R50","N/R50")))
Call:
lm(formula = Lifetime ~ X, data = case0501, subset = Diet %in%
    c("R/R50", "N/R50"))
Coefficients:
(Intercept)
    42.8857 -0.5885
confint(m)
    2.5% 97.5 %
(Intercept) 40.952257 44.819172
X -3.174405 1.997342
predict(m, data.frame(X=1), interval = "confidence") # Expected lifetime on N/R50
\begin{tabular}{llrr} 
& fit & lwr upr
\end{tabular}
```


## Mice lifetimes



## Equivalence to a two-sample t-test

Recall that our two-sample t-test had the model

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)
$$

for groups $j=0,1$. This is equivalent to our current regression model where

$$
\begin{aligned}
& \mu_{0}=\beta_{0} \\
& \mu_{1}=\beta_{0}+\beta_{1}
\end{aligned}
$$

assuming

- $\mu_{0}$ represents the mean for the R/R50 group and
- $\mu_{1}$ represents the mean for N/R50 group.

When the models are effectively the same, but have different parameters we the model is reparameterized.

## Equivalence

```
summary(m)$coefficients[2,4] # p-value
[1] 0.6531748
confint(m)
    2.5% 97.5 %
(Intercept) 40.952257 44.819172
X -3.174405 1.997342
t.test(Lifetime ~ Diet, data = case0501, subset = Diet %in% c("R/R50","N/R50"), var.equal=TRUE)
Two Sample t-test
data: Lifetime by Diet
t = -0.45044, df = 125, p-value = 0.6532
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -3.174405 1.997342
sample estimates:
mean in group N/R50 mean in group R/R50
    42.29718 42.88571
```


## Using a categorical variable as an explanatory variable.



## Regression with a categorical variable

1. Choose one of the levels as the reference level, e.g. N/N85
2. Construct dummy variables using indicator functions, i.e.

$$
\mathrm{I}(A)= \begin{cases}1 & A \text { is TRUE } \\ 0 & A \text { is FALSE }\end{cases}
$$

for the other levels, e.g.

$$
\begin{aligned}
& X_{i, 1}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{N} / \mathrm{R} 40) \\
& X_{i, 2}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{N} / \mathrm{R} 50) \\
& X_{i, 3}=\mathrm{I}(\text { diet for observation } i \text { is NP) } \\
& X_{i, 4}=\mathrm{I}(\text { diet for observation } i \text { is } \mathrm{R} / \mathrm{R} 50) \\
& X_{i, 5}=\mathrm{I}(\text { diet for observation } i \text { is lopro) }
\end{aligned}
$$

3. Estimate the parameters of a multiple regression model using these dummy variables.

## Regression model

Our regression model becomes

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{3} X_{i, 3}+\beta_{4} X_{i, 4}+\beta_{5} X_{i, 5}, \sigma^{2}\right)
$$

where

- $\beta_{0} \quad$ is the expected lifetime for the N/N85 group
- $\beta_{0}+\beta_{1}$ is the expected lifetime for the $\mathrm{N} / \mathrm{R} 40$ group
- $\beta_{0}+\beta_{2}$ is the expected lifetime for the N/R50 group
- $\beta_{0}+\beta_{3}$ is the expected lifetime for the NP group
- $\beta_{0}+\beta_{4}$ is the expected lifetime for the R/R50 group
- $\beta_{0}+\beta_{5}$ is the expected lifetime for the lopro group
and thus $\beta_{p}$ for $p>0$ is the difference in expected lifetimes between one group and a reference group.


## R code

```
case0501 <- case0501 %>%
    mutate(X1 = Diet == "N/R40",
        X2 = Diet == "N/R50",
        X3 = Diet == "NP",
        X4 = Diet == "R/R50",
        X5 = Diet == "lopro")
m <- lm(Lifetime ~ X1 + X2 + X3 + X4 + X5, data = case0501)
m
Call:
lm(formula = Lifetime ~ X1 + X2 + X3 + X4 + X5, data = case0501)
\begin{tabular}{rrrrrr} 
Coefficients: & & & & \\
(Intercept) & X1TRUE & X2TRUE & X3TRUE & X4TRUE & X5TRUE \\
32.691 & 12.425 & 9.606 & -5.289 & 10.194 & 6.994
\end{tabular}
confint(m)
    2.5% 97.5%
(Intercept) 30.951394 34.431062
X1TRUE 9.995893 14.854984
X2TRUE 7.269897 11.942013
X3TRUE -7.848142 -2.730232
X4TRUE 7.723030 12.665943
X5TRUE 4.523030 9.465943
```


## R code (cont.)

```
summary(m)
Call:
lm(formula = Lifetime ~ X1 + X2 + X3 + X4 + X5, data = case0501)
Residuals:
    Min 1Q Median 3Q Max
-25.5167 -3.3857 0.8143 5.1833 10.0143
Coefficients:
    Estimate Std. Error t value Pr}(>|t|
(Intercept) 32.6912 0.8846 36.958 < 2e-16 ***
X1TRUE 12.4254 1.2352 10.059 < 2e-16 ***
X2TRUE 9.6060 1.1877 8.088 1.06e-14 ***
X3TRUE -5.2892 1.3010 -4.065 5.95e-05 ***
X4TRUE 10.1945 1.2565 8.113 8.88e-15 ***
\begin{tabular}{llll} 
X5TRUE & \(6.9945 \quad 1.2565 \quad 5.567\) & \(5.25 e-08\) & ***
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.678 on 343 degrees of freedom
Multiple R-squared: 0.4543,Adjusted R-squared: 0.4463
F-statistic: 57.1 on 5 and 343 DF, p-value: < 2.2e-16
```


## Interpretation

- $\beta_{0}=E\left[Y_{i} \mid\right.$ reference level $]$, i.e. expected response for the reference level Note: the only way $X_{i, 1}=\cdots=X_{i, p}=0$ is if all indicators are zero, i.e. at the reference level.
- $\beta_{p}, p>0$ : expected change in the response moving from the reference level to the level associated with the $p^{\text {th }}$ dummy variable
Note: the only way for $X_{i, p}$ to increase by one is if initially $X_{i, 1}=\cdots=X_{i, p}=0$ and now $X_{i, p}=1$

For example,

- The expected lifetime for mice on the N/N85 diet is 32.7 (31.0,34.4) months.
- The expected increase in lifetime for mice on the $\mathrm{N} / \mathrm{R} 40$ diet compared to the $\mathrm{N} / \mathrm{N} 85$ diet is 12.4 $(10.0,14.9)$ months.
- The model explains $45 \%$ of the variability in mice lifetimes.


## Using a categorical variable as an explanatory variable.



## Equivalence to multiple group model

Recall that we had a multiple group model

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)
$$

for groups $j=0,1,2, \ldots, 5$.
Our regression model is a reparameterization of the multiple group model:

$$
\begin{array}{ll}
N / N 85: & \mu_{0}=\beta_{0} \\
N / R 40: & \mu_{1}=\beta_{0}+\beta_{1} \\
N / R 50: & \mu_{2}=\beta_{0}+\beta_{2} \\
N P: & \mu_{3}=\beta_{0}+\beta_{3} \\
R / R 50: & \mu_{4}=\beta_{0}+\beta_{4} \\
\text { lopro: } & \mu_{5}=\beta_{0}+\beta_{5}
\end{array}
$$

assuming the groups are labeled appropriately.

## Summary

1. Choose one of the levels as the reference level.
2. Construct dummy variables using indicator functions for all other levels, e.g.

$$
X_{i}=\mathrm{I}(\text { observation } i \text { is }<\text { some non-reference level }>)
$$

3. Estimate the parameters of a multiple regression model using these dummy variables.

# R05 - Multiple Regression 

STAT 587 (Engineering)

lowa State University

March 30, 2021

## Multiple regression

Recall the simple linear regression model is

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right), \quad \mu_{i}=\beta_{0}+\beta_{1} X_{i}
$$

The multiple regression model has mean

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
$$

where for observation $i$

- $Y_{i}$ is the response and
- $X_{i, p}$ is the $p^{t h}$ explanatory variable.


## Explanatory variables

There is a lot of flexibility in the mean

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
$$

as there are many possibilities for the explanatory variables $X_{i, 1}, \ldots, X_{i, p}$ :

- Functions $(f(X))$
- Dummy variables for categorical variables $\left(X_{1}=I()\right)$
- Higher order terms $\left(X^{2}\right)$
- Additional explanatory variables $\left(X_{1}, X_{2}\right)$
- Interactions $\left(X_{1} X_{2}\right)$
- Continuous-continuous
- Continuous-categorical
- Categorical-categorical


## Parameter interpretation

Model:

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}, \sigma^{2}\right)
$$

The interpretation is

- $\beta_{0}$ is the expected value of the response $Y_{i}$ when all explanatory variables are zero.
- $\beta_{p}, p \neq 0$ is the expected increase in the response for a one-unit increase in the $p^{t h}$ explanatory variable when all other explanatory variables are held constant.
- $R^{2}$ is the proportion of the variability in the response explained by the model


## Parameter estimation and inferece

Let

$$
y=X \beta+\epsilon
$$

where

$$
\text { - } y=\left(y_{1}, \ldots, y_{n}\right)^{\top}
$$

- $X$ is $n \times p$ with $i$ th row $X_{i}=\left(1, X_{i, 1}, \ldots, X_{i, p}\right)$
- $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\top}$
- $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\top}$

Then we have

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\top} X\right)^{-1} X^{\top} y \\
\operatorname{Var}(\hat{\beta}) & =\sigma^{2}\left(X^{\top} X\right)^{-1} \\
r & =y-X \hat{\beta} \\
\hat{\sigma}^{2} & =\frac{1}{n-(p+1)} r^{\top} r
\end{aligned}
$$

Confidence/credible intervals and (two-sided) $p$-values are constructed using

$$
\hat{\beta}_{j} \pm t_{n-(p+1), 1-a / 2} S E\left(\hat{\beta}_{j}\right) \quad \text { and } \quad \text { pvalue }=2 P\left(T_{n-(p+1)}>\left|\frac{\hat{\beta}_{j}-b_{j}}{S E\left(\hat{\beta}_{j}\right)}\right|\right)
$$

where $T_{n-(p+1)} \sim t_{n-(p+1)}$ and $S E\left(\hat{\beta}_{j}\right)$ is the $j$ th diagonal element of $\hat{\sigma}^{2}\left(X^{\top} X\right)^{-1}$.

## Galileo experiment



## Galileo data (Sleuth3: :case1001)



## Higher order terms $\left(X^{2}\right)$

Let

- $Y_{i}$ be the distance for the $i^{t h}$ run of the experiment and
- $H_{i}$ be the height for the $i^{t h}$ run of the experiment.

Simple linear regression assumes

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} H_{i} \quad, \sigma^{2}\right)
$$

The quadratic multiple regression assumes

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} H_{i}+\beta_{2} H_{i}^{2} \quad, \sigma^{2}\right)
$$

The cubic multiple regression assumes

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} H_{i}+\beta_{2} H_{i}^{2}+\beta_{3} H_{i}^{3}, \sigma^{2}\right)
$$

## R code and output

```
# Construct the variables by hand
m1 = lm(Distance ~ Height, case1001)
m2 = lm(Distance ~ Height + I(Height^2), case1001)
m3 = lm(Distance ~ Height + I(Height^2) + I(Height^3), case1001)
coefficients(m1)
(Intercept) Height
coefficients(m2)
    (Intercept) Height I(Height^2)
1.999128e+02 7.083225e-01 -3.436937e-04
coefficients(m3)
    (Intercept) Height I(Height^2) I (Height^3)
    1.557755e+02 1.115298e+00 -1.244943e-03 5.477104e-07
```


## Galileo experiment (Sleuth3::case1001)






## Longnose Dace Abundance

From http://udel.edu/~mcdonald/statmultreg.html:
I extracted some data from the Maryland Biological Stream Survey. ... The [response] variable is the number of Longnose Dace ... per 75 -meter section of [a] stream. The [explanatory] variables are ... the maximum depth (in cm ) of the 75 -meter segment of stream; nitrate concentration ( $\mathrm{mg} / \mathrm{liter}$ ) ....

Consider the model

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}, \sigma^{2}\right)
$$

where

- $Y_{i}$ : count of Longnose Dace in stream $i$
- $X_{i, 1}$ : maximum depth (in cm ) of stream $i$
- $X_{i, 2}$ : nitrate concentration ( $\mathrm{mg} /$ liter) of stream $i$


## Exploratory



## R code and output

```
m <- lm(count ~ maxdepth + no3, longnosedace)
summary (m)
Call:
lm(formula = count ~ maxdepth + no3, data = longnosedace)
Residuals:
    Min 1Q Median 3Q Max
-55.060 -27.704 -8.679 11.794 165.310
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5550 15.9586 -1.100 0.27544
\begin{tabular}{lllll} 
maxdepth 0.4811 & 0.1811 & 2.656 & 0.00997 **
\end{tabular}
\begin{tabular}{lllll} 
no3 & 8.2847 & 2.9566 & 2.802 & 0.00671
\end{tabular} **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.39 on 64 degrees of freedom
Multiple R-squared: 0.1936,Adjusted R-squared: 0.1684
F-statistic: }7.682\mathrm{ on 2 and 64 DF, p-value: 0.001022
```


## Interpretation

- Intercept ( $\beta_{0}$ ): The expected count of Longnose Dace when maximum depth and nitrate concentration are both zero is -18 .
- Coefficient for maxdepth $\left(\beta_{1}\right)$ : Holding nitrate concentration constant, each cm increase in maximum depth is associated with an additional 0.48 Longnose Dace counted on average.
- Coefficient for no3 ( $\beta_{2}$ ): Holding maximum depth constant, each $\mathrm{mg} /$ liter increase in nitrate concentration is associated with an addition 8.3 Longnose Dace counted on average.
- Coefficient of determination $\left(R^{2}\right)$ : The model explains $19 \%$ of the variability in the count of Longnose Dace.


## Interactions

Why an interaction?
Two explanatory variables are said to interact if the effect that one of them has on the mean response depends on the value of the other.

For example,

- Longnose dace count: The effect of nitrate (no3) on longnose dace count depends on the maxdepth. (Continuous-continuous)
- Energy expenditure: The effect of mass depends on the species type. (Continuous-categorical)
- Crop yield: the effect of tillage method depends on the fertilizer brand (Categorical-categorical)


## Continuous-continuous interaction

For observation $i$, let

- $Y_{i}$ be the response
- $X_{i, 1}$ be the first explanatory variable and
- $X_{i, 2}$ be the second explanatory variable.

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}
$$

The mean with the interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{3} X_{i, 1} X_{i, 2}
$$

Intepretation - main effects only

Let $X_{i, 1}=x_{1}$ and $X_{i, 2}=x_{2}$, then we can rewrite the line $(\mu)$ as

$$
\mu=\left(\beta_{0}+\beta_{2} x_{2}\right)+\beta_{1} x_{1}
$$

which indicates that the intercept of the line for $x_{1}$ depends on the value of $x_{2}$.

Similarly,

$$
\mu=\left(\beta_{0}+\beta_{1} x_{1}\right)+\beta_{2} x_{2}
$$

which indicates that the intercept of the line for $x_{2}$ depends on the value of $x_{1}$.

Intepretation - with an interaction

Let $X_{i, 1}=x_{1}$ and $X_{i, 2}=x_{2}$, then we can rewrite the mean $(\mu)$ as

$$
\mu=\left(\beta_{0}+\beta_{2} x_{2}\right)+\left(\beta_{1}+\beta_{3} x_{2}\right) x_{1}
$$

which indicates that both the intercept and slope for $x_{1}$ depend on the value of $x_{2}$.

Similarly,

$$
\mu=\left(\beta_{0}+\beta_{1} x_{1}\right)+\left(\beta_{2}+\beta_{3} x_{1}\right) x_{2}
$$

which indicates that both the intercept and slope for $x_{2}$ depend on the value of $x_{1}$.

## R code and output - main effects only

```
Call:
lm(formula = count ~ no3 + maxdepth, data = longnosedace)
\begin{tabular}{lrrrrr} 
Residuals: & & & & \\
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-55.060 & -27.704 & -8.679 & 11.794 & 165.310
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5550 15.9586 -1.100 0.27544
\begin{tabular}{lllll} 
no3 & 8.2847 & 2.9566 & 2.802 & 0.00671 **
\end{tabular}
\begin{tabular}{lllll} 
maxdepth \(\quad 0.4811\) & 0.1811 & 2.656 & 0.00997 **
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.39 on 64 degrees of freedom
Multiple R-squared: 0.1936,Adjusted R-squared: 0.1684
F-statistic: }7.682\mathrm{ on 2 and 64 DF, p-value: 0.001022
```


## R code and output - with an interaction

```
Call:
lm(formula = count ~ no3 * maxdepth, data = longnosedace)
\begin{tabular}{lrrrrr} 
Residuals: & & & & \\
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-65.111 & -21.399 & -9.562 & 5.953 & 151.071
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline (Intercept) & 13.321043 & 23.455710 & 0.568 & 0.5721 \\
\hline no3 & -4.646272 & 7.856932 & -0.591 & 0.5564 \\
\hline maxdepth & -0.009338 & 0.329180 & -0.028 & 0.9775 \\
\hline no3:maxdepth & 0.201219 & 0.113576 & 1.772 & 0.0813 \\
\hline
\end{tabular}
```

Residual standard error: 42.68 on 63 degrees of freedom Multiple R-squared: 0.2319 ,Adjusted R-squared: 0.1953 F-statistic: 6.339 on 3 and 63 DF, p-value: 0.0007966

## Visualizing the model



## In-flight energy expenditure (Sleuth3::case1002)



Type - echolocating bats non-echolocating bats

## Continuous-categorical interaction

Let category A be the reference level. For observation $i$, let

- $Y_{i}$ be the response
- $X_{i, 1}$ be the continuous explanatory variable,
- $B_{i}$ be a dummy variable for category B , and
- $C_{i}$ be a dummy variable for category C .

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i} .
$$

The mean with the interaction is
$\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} X_{i, 1} B_{i}+\beta_{5} X_{i, 1} C_{i}$.

## Interpretation for the main effect model

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i} .
$$

For each category, the line is

| Category | Line $(\mu)$ |  |  |
| :---: | :---: | :---: | :---: |
| $A$ | $\beta_{0}$ | $+\beta_{1} X$ |  |
| $B$ | $\left(\beta_{0}+\beta_{2}\right)$ | $+\beta_{1} X$ |  |
| $C$ | $\left(\beta_{0}+\beta_{3}\right)$ | $+\beta_{1} X$ |  |

Each category has a different intercept, but a common slope.

## Interpretation for the model with an interaction

The model with an interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} X_{i, 1} B_{i}+\beta_{5} X_{i, 1} C_{i}
$$

For each category, the line is

| Category | Line $(\mu)$ |  |  |
| :---: | :--- | :--- | ---: |
| $A$ | $\beta_{0}$ | $+\beta_{1}$ | $X$ |
| $B$ | $\left(\beta_{0}+\beta_{2}\right)$ | $+\left(\beta_{1}+\beta_{4}\right) X$ |  |
| $C$ | $\left(\beta_{0}+\beta_{3}\right)$ | $+\left(\beta_{1}+\beta_{5}\right) X$ |  |

Each category has its own intercept and its own slope.

## R code and output - main effects only

```
summary(mM <- lm(log(Energy) ~ log(Mass) + Type, case1002))
Call:
lm(formula = log(Energy) ~ log(Mass) + Type, data = case1002)
Residuals:
    Min 1Q Median 3Q Max
-0.23224 -0.12199 -0.03637 0.12574 0.34457
Coefficients:
\begin{tabular}{lrrrrr} 
(Intercept) & -1.49770 & 0.14987 & -9.993 & \(2.77 \mathrm{e}-08\) & \(* * *\) \\
\(\log\) (Mass) & 0.81496 & 0.04454 & 18.297 & \(3.76 \mathrm{e}-12\) & \(* * *\) \\
Typenon-echolocating bats & -0.07866 & 0.20268 & -0.388 & 0.703 \\
Typenon-echolocating birds & 0.02360 & 0.15760 & 0.150 & 0.883
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.186 on 16 degrees of freedom
Multiple R-squared: 0.9815,Adjusted R-squared: 0.9781
F-statistic: 283.6 on 3 and 16 DF, p-value: 4.464e-14
```


## R code and output - with an interaction



Residual standard error: 0.1899 on 14 degrees of freedom
Multiple R-squared: 0.9832,Adjusted R-squared: 0.9771
F-statistic: 163.4 on 5 and 14 DF, p-value: $6.696 \mathrm{e}-12$

## Visualizing the models



Type - echolocating bats $-\cdots$ non-echolocating bats $-=$. non-echolocating birds

## Seaweed regeneration (Sleuth3::case1301 subset)



## Categorical-categorical

Let category A and type 0 be the reference level. For observation $i$, let

- $Y_{i}$ be the response,
- $1_{i}$ be a dummy variable for type 1 ,
- $B_{i}$ be a dummy variable for category B , and
- $C_{i}$ be a dummy variable for category C .

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i} .
$$

The mean with an interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} 1_{i} B_{i}+\beta_{5} 1_{i} C_{i} .
$$

## Interpretation for the main effects model

The mean containing only main effects is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i} .
$$

The means in the main effect model are

|  | Category |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
| Type | $A$ | $B$ | $C$ |  |
| 0 | $\beta_{0}$ | $\beta_{0}+\beta_{2}$ | $\beta_{0}$ | $+\beta_{3}$ |
| 1 | $\beta_{0}+\beta_{1}$ | $\beta_{0}+\beta_{1}+\beta_{2}$ | $\beta_{0}+\beta_{1}+\beta_{3}$ |  |

## Interpretation for the model with an interaction

The mean with an interaction is

$$
\mu_{i}=\beta_{0}+\beta_{1} 1_{i}+\beta_{2} B_{i}+\beta_{3} C_{i}+\beta_{4} 1_{i} B_{i}+\beta_{5} 1_{i} C_{i}
$$

The means are


This is equivalent to a cell-means model where each combination has its own mean.

## R code and output - main effects only

```
Call:
lm(formula = Cover ~ Block + Treat, data = case1301_subset)
\begin{tabular}{lrrrr} 
Residuals: & & & \\
Min & 1Q & Median & 3Q & Max \\
-2.3333 & -0.6667 & 0.0000 & 0.7917 & 1.8333
\end{tabular}
Coefficients:
Estimate Std. Error t value Pr(>|t|)
BlockB2 2.1667 0.7683 2.8200 .022491 *
TreatLf -1.5000 0.9410 -1.594 0.149578
TreatLfF -3.0000 0.9410 -3.188 0.012838 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.331 on 8 degrees of freedom
Multiple R-squared: 0.6937,Adjusted R-squared: 0.5788
F-statistic: 6.039 on 3 and 8 DF, p-value: 0.01881
```


## R code and output - with an interaction

```
Call:
lm(formula = Cover ~ Block * Treat, data = case1301_subset)
Residuals:
Min 1Q Median \(3 Q\) Max
\begin{tabular}{lllll}
-1.500 & -0.625 & 0.000 & 0.625 & 1.500
\end{tabular}
Coefficients:
```



```
Residual standard error: 1.258 on 6 degrees of freedom Multiple R-squared: 0.7946,Adjusted R-squared: 0.6234 F-statistic: 4.642 on 5 and 6 DF, p-value: 0.04429
```


## Visualizing the models



## When to include interaction terms

From The Statistical Sleuth (3rd ed) page 250:

- when a question of interest pertains to an interaction
- when good reason exists to suspect an interaction or
- when interactions are proposed as a more general model for the purpose of examining the goodness of fit of a model without interaction.


## Multiple regression explanatory variables

The possibilities for explanatory variables are

- Higher order terms $\left(X^{2}\right)$
- Additional explanatory variables ( $X_{1}$ and $X_{2}$ )
- Dummy variables for categorical variables $\left(X_{1}=\mathrm{I}()\right)$
- Interactions ( $X_{1} X_{2}$ )
- Continuous-continuous
- Continuous-categorical
- Categorical-categorical

We can also combine these explanatory variables, e.g.

- including higher order terms for continuous variables along with dummy variables for categorical variables and
- including higher order interactions $\left(X_{1} X_{2} X_{3}\right)$.


# R06 - ANOVA and F-tests 

STAT 587 (Engineering) lowa State University

March 30, 2021

## One-way ANOVA model/assumptions

The one-way ANOVA (ANalysis Of VAriance) model is

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right) \quad \text { or } \quad Y_{i j}=\mu_{j}+\epsilon_{i j}, \epsilon_{i j} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

for $j=1, \ldots, J$ and $i=1, \ldots, n_{j}$.

Assumptions:

- Errors are normally distributed.
- Errors have a common variance.
- Errors are independent.


## ANOVA assumptions graphically



## Consider the mice data set



## One-way ANOVA F-test

Are any of the means different?

Hypotheses in English:
$H_{0}$ : all the means are the same
$H_{1}$ : at least one of the means is different

Statistical hypotheses:

| $H_{0}:$ | $\mu_{j}=\mu$ for all $j$ |
| :--- | :--- |
| $H_{1}:$ | $\mu_{j} \neq \mu_{j^{\prime}}$ for some $j$ and $j^{\prime}$ |
| $\stackrel{i i d}{\sim}$ | $Y_{i j} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$ |
| $\left.\mu_{j}, \sigma^{2}\right)$ |  |

An ANOVA table organizes the relevant quantities for this test and computes the pvalue.

## ANOVA table

A start of an ANOVA table:

| Source of variation | Sum of squares | d.f. | Mean square |
| :--- | :--- | :---: | :---: |
| Factor A (Between groups) | $S S A=\sum_{j=1}^{J} n_{j}\left(\bar{Y}_{j}-\bar{Y}\right)^{2}$ | $J-1$ | $\frac{S S A}{J-1}$ |
| Error (Within groups) | $S S E=\sum_{j=1}^{J} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{j}\right)^{2}$ | $n-J$ | $\frac{S S E}{n-J}\left(=\hat{\sigma}^{2}\right)$ |
| Total | $S S T=\sum_{j=1}^{J} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}\right)^{2}$ | $n-1$ |  |

where

- $J$ is the number of groups,
- $n_{j}$ is the number of observations in group $j$,
- $n=\sum_{j=1}^{J} n_{j}$ (total observations),
- $\bar{Y}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j}$ (average in group $j$ ),
- and $\bar{Y}=\frac{1}{n} \sum_{j=1}^{J} \sum_{i=1}^{n_{j}} Y_{i j}$ (overall average).


## ANOVA table

An easier to remember ANOVA table:

| Source of variation | Sum of squares | df | Mean square | F-statistic | p-value |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Factor A (between groups) | SSA | $J-1$ | MSA $=$ SSA $/ J-1$ | MSA/MSE | (see below) |
| Error (within groups) | SSE | $n-J$ | MSE $=$ SSE $/ n-J$ |  |  |
| Total | SST $=$ SSA+SSE | $n-1$ |  |  |  |

Under $H_{0}\left(\mu_{j}=\mu\right)$,

- the quantity MSA/MSE has an F-distribution with $J-1$ numerator and $n-J$ denominator degrees of freedom,
- larger values of MSA/MSE indicate evidence against $H_{0}$, and
- the p -value is determined by $P\left(F_{J-1, n-J}>M S A / M S E\right)$.


## F-distribution

$F$-distribution has two parameters:

- numerator degrees of freedom (ndf)
- denominator degrees of freedom (ddf)



## One-way ANOVA F-test (by hand)

```
# A tibble: 7 x 4
    Diet n mean sd
    <chr> <int> <dbl> <dbl>
1 N/N85 57 32.7 5.13
2 N/R40 60 45.1 6.70
3 N/R50 71 42.3 7.77
4 NP 49 27.4 6.13
5 R/R50 56 42.9 6.68
6 lopro }\begin{array}{llll}{56}&{39.7}&{6.99}
```



```
So
    SSA= 57\times(32.7-38.8) 2}+60\times(45.1-38.8) 2 + 71\times(42.3-38.8) 2 + 49\times(27.4-38.8) 2',
        +56\times(42.9-38.8)2}+56\times(39.7-38.8) 2=1273
    SST = (349-1)\times8.97}\mp@subsup{7}{}{2}=2800
    SSE= SST-SSA=28000-12734=15266
    J-1=5
n-J= 349-6=343
n-1=348
MSA= SSA/J-1=12734/5=2547
```



```
    F= MSA/MSE=2547/44.5=57.2
    p=P(F5,343>57.2)<0.0001
```

$F$ statistic is off by 0.1 relative to the table later, because of rounding of 8.97. The real SST is

## Graphical comparison



## R code and output for one-way ANOVA

```
m <- lm(Lifetime~Diet, case0501)
anova(m)
Analysis of Variance Table
Response: Lifetime
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Diet & 5 & 12734 & 2546.8 & \(57.104<2.2 e-16 \quad * * *\) \\
Residuals & 343 & 15297 & 44.6 & &
\end{tabular}
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01\) '*' \(0.05 '^{\prime} 0.1^{\prime} 1\)
```

There is evidence against the null model $Y_{i j} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$.

## General F-tests

The one-way ANOVA F-test is an example of a general hypothesis testing framework that uses F-tests. This framework can be used to test

- composite alternative hypotheses or, equivalently,
- a full vs a reduced model.

The general idea is to balance the amount of variability remaining when moving from the reduced model to the full model measured using the sums of squared errors (SSEs) relative to the amount of complexity, i.e. parameters, added to the model.

## Testing full vs reduced models

If $Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$ for $j=1, \ldots, J$ and we want to test the hypotheses

- $H_{0}: \mu_{j}=\mu$ for all $j$
- $H_{1}: \mu_{j} \neq \mu_{j^{\prime}}$ for some $j$ and $j^{\prime}$
think about this as two models:
- $H_{0}: Y_{i j} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right)$ (reduced)
- $H_{1}: Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$ (full)

We can use an F-test to calculate a p-value for tests of this type.

## Nested models: full vs reduced

Two models are nested if the reduced model is a special case of the full model.

For example, consider the full model

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right) .
$$

One special case of this model occurs when $\mu_{j}=\mu$ and thus

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu, \sigma^{2}\right) .
$$

is a reduced model and these two models are nested.

## Calculating the sum of squared residuals (errors)

| Model | Full | Reduced |
| :--- | :---: | :---: |
| Assumption | $H_{1}: Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$ | $H_{0}: Y_{i j} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$ |
| Mean | $\hat{\mu}_{j}=\bar{Y}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j}$ | $\hat{\mu}=\bar{Y}=\frac{1}{n} \sum_{j=1}^{J} \sum_{i=1}^{n_{j}} Y_{i j}$ |
| Residual | $r_{i j}=Y_{i j}-\hat{\mu}_{j}=Y_{i j}-\bar{Y}_{j}$ | $r_{i j}=Y_{i j}-\hat{\mu}=Y_{i j}-\bar{Y}$ |
| SSE | $\sum_{j=1}^{J} \sum_{i=1}^{n_{j}} r_{i j}^{2}$ | $\sum_{j=1}^{J} \sum_{i=1}^{n_{j}} r_{i j}^{2}$ |

## General F-tests

Do the following

1. Calculate

Extra sum of squares $=$
Residual sum of squares (reduced) - Residual sum of squares (full)
2. Calculate

Extra degrees of freedom $=$
\# of mean parameters (full) - \# of mean parameters (reduced)
3. Calculate F-statistics

$$
F=\frac{\text { Extra sum of squares } / \text { Extra degrees of freedom }}{\text { Estimated residual variance in full model }\left(\hat{\sigma}^{2}\right)}
$$

4. A pvalue is $P\left(F_{\mathrm{ndf}, \mathrm{ddf}}>\mathrm{F}\right)$

- numerator degrees of freedom (ndf) = Extra degrees of freedom
- denominator degrees of freedom (ddf): df


## Mice lifetimes

Consider the hypothesis that all diets have a common mean lifetime except NP. Let

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)
$$

with $j=1$ being the NP group then the hypotheses are

- $H_{0}: \mu_{j}=\mu$ for $j \neq 1$
- $H_{1}: \mu_{j} \neq \mu_{j^{\prime}}$ for some $j, j^{\prime}=2, \ldots, 6$

As models:

- $H_{0}: Y_{i 1} \stackrel{i i d}{\sim} N\left(\mu_{1}, \sigma^{2}\right)$ and $Y_{i j} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$ for $j \neq 1$
- $H_{1}: Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$


## As a picture



## Making R do the calculations

```
case0501$NP = factor(case0501$Diet == "NP")
modR = lm(Lifetime NN, case0501) # (R) educed model
modF = lm(Lifetime~Diet, case0501) # (F)ull model
anova(modR,modF)
Analysis of Variance Table
Model 1: Lifetime ~ NP
Model 2: Lifetime ~ Diet
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 347 20630
2 343 15297 4 5332.2 29.89 < 2. 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


## Lack-of-fit F-test for linearity

Let $Y_{i j}$ be the $i^{t h}$ observation from the $j^{t h}$ group where the group is defined by those observations having the same explanatory variable value $\left(X_{j}\right)$.

Two models:
ANOVA: $\quad Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$
Regression: $Y_{i j} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{j}, \sigma^{2}\right) \quad$ (reduced)

- Regression model is reduced:
- ANOVA has $J$ parameters for the mean
- Regression has 2 parameters for the mean
- Set $\mu_{j}=\beta_{0}+\beta_{1} X_{j}$.
- Small pvalues indicate a lack-of-fit, i.e. the regression (reduced) model is not adequate.
- Lack-of-fit F-test requires multiple observations at a few $X_{j}$ values!


## pH vs Time - ANOVA

pH vs Time in Steer Carcasses

pH vs Time - Regression
pH vs Time in Steer Carcasses


## Lack-of-fit F-test in R

```
# Use as.factor to turn a continuous variable into a categorical variable
m_anova = lm(pH ~ as.factor(Time), Sleuth3::ex0816)
m_reg = lm(pH ~ Time , Sleuth3::ex0816)
anova(m_reg, m_anova)
Analysis of Variance Table
Model 1: pH ~ Time
Model 2: pH ~ as.factor(Time)
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 10 1.97289
2 6 0.05905 4 1.9138 48.616 0.0001048 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

There is evidence the data are incompatible with the null hypothesis that states the means of each group fall along a line.

## Summary

- Use F-tests for comparison of full vs reduced model
- One-way ANOVA F-test
- General F-tests
- Lack-of-fit F-tests

Think about F-tests as comparing models.

# R06a - Interpreting Regression p-values as Posterior Probabilities 

STAT 587 (Engineering)
lowa State University

March 30, 2021

## Regression $p$-values

Recall the regression model

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right), \quad \mu_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{p} X_{i, p}
$$

A common hypothesis test is

$$
H_{0}: \beta_{j}=0 \quad \text { versus } \quad H_{A}: \beta_{j} \neq 0
$$

which has

$$
p \text {-value }=2 P(T>|t|)
$$

where $T \sim t_{n-(p+1)}$ and $t=\hat{\beta}_{j} / S E\left(\beta_{j}\right)$.

## Example Regression Output

```
Call:
lm(formula = Speed ~ Conditions * log(NetToWinner), data = Sleuth3::ex0920)
\begin{tabular}{cc} 
Residuals: \\
Min & MQ Median
\end{tabular} MQ Max
-1.50551 -0.32127-0.00219 0.35201 1.13026
Coefficients:
(Intercept) 33.23367 0.34584 96.095 < 2e-16 ***
ConditionsSlow -2.04517 0.72404 -2.825 0.0056 **
log(NetToWinner) 0.27830 0.02942 9.458 5.88e-16 ***
ConditionsSlow:log(NetToWinner)
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4978 on 112 degrees of freedom
Multiple R-squared: 0.7015,Adjusted R-squared: 0.6935
F-statistic: 87.75 on 3 and 112 DF, p-value: < 2.2e-16
```


## Bayesian Posterior Probabilities

With prior $p\left(\beta, \sigma^{2}\right) \propto 1 / \sigma^{2}$, we have

$$
\beta_{j} \mid y \sim t_{n-(p+1)}\left(\hat{\beta}_{j}, S E\left(\beta_{j}\right)^{2}\right)
$$

Thus

$$
P\left(\beta_{j}>0 \mid y\right)=P\left(\left.\frac{\beta_{j}-\hat{\beta}_{j}}{S E\left(\beta_{j}\right)}>\frac{0-\hat{\beta}_{j}}{S E\left(\beta_{j}\right)} \right\rvert\, y\right)=P(T>-t)
$$

which is very close to

$$
p \text {-value }=2 P(T>|t|) .
$$

## Visualizing Posterior Distribution

Two Posterior Distributions Resulting in the Same p-value


## Visualizing Posterior Distribution

Two Posterior Distributions Resulting in the Same p-value


## Visualizing Posterior Distribution

Two Posterior Distributions Resulting in the Same p-value


## Interpreting Regression $p$-values as Posterior Probabilities

Suppose we have a $p$-value for $H_{0}: \beta_{j}=0$ vs $H_{A}: \beta_{j} \neq 0$. Then

- If $\hat{\beta}_{j}<0$, then

$$
P\left(\beta_{j}>0 \mid y\right)=p \text {-value } / 2
$$

- If $\hat{\beta}_{j}>0$, then

$$
P\left(\beta_{j}<0 \mid y\right)=p \text {-value } / 2
$$

Alternatively,

- If $\hat{\beta}_{j}<0$, then

$$
P\left(\beta_{j}<0 \mid y\right)=1-p \text {-value } / 2 .
$$

- If $\hat{\beta}_{j}>0$, then

$$
P\left(\beta_{j}>0 \mid y\right)=1-p \text {-value } / 2
$$

## Example Interpretation

|  | Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 33.23 | 0.35 | 96.09 | 0.00 |
| ConditionsSlow | -2.05 | 0.72 | -2.82 | 0.01 |
| log(NetToWinner) | 0.28 | 0.03 | 9.46 | 0.00 |
| ConditionsSlow:log(NetToWinner) | 0.09 | 0.07 | 1.32 | 0.19 |


| Intercept | $P\left(\beta_{0}>0 \mid y\right) \approx 1$ |
| :--- | :--- |
| ConditionsSlow | $P\left(\beta_{1}<0 \mid y\right) \approx 0.99$ |
| $\log ($ NetToWinner $)$ | $P\left(\beta_{2}>0 \mid y\right) \approx 1$ |
| ConditionsSlow: $\log ($ NetToWinner $)$ | $P\left(\beta_{3}>0 \mid y\right) \approx 0.90$ |

## Summary

Suppose we have a regression $p$-value for $H_{0}: \beta_{j}=0$ vs $H_{A}: \beta_{j} \neq 0$. Then

- If $\hat{\beta}_{j}<0$, then

$$
P\left(\beta_{j}<0 \mid y\right)=1-p \text {-value } / 2
$$

- If $\hat{\beta}_{j}>0$, then

$$
P\left(\beta_{j}>0 \mid y\right)=1-p \text {-value } / 2
$$

# R07 - Contrasts 

STAT 587 (Engineering)<br>lowa State University

March 30, 2021

## Diet Effect on Mice Lifetimes



## ANOVA and Regression Models

ANOVA model:

$$
Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)
$$

with $Y_{i j}$ being the lifetime for the $i$ th mouse on the $j$ th diet for $j=0,1,2,3,4,5$.
Regression model:

$$
Y_{i} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} X_{i, 1}+\ldots+\beta_{p} X_{i, p}, \sigma^{2}\right)
$$

where $Y_{i}$ is the lifetime for the $i$ th mouse and $X_{i, j}$ is an indicator for the $i$ th mouse being on the $j$ th diet.

Reparameterized model since

$$
\mu_{0}=\beta_{0} \quad \text { and } \quad \mu_{j}=\beta_{0}+\beta_{j}
$$

for $j>0$.

## Scientific questions

Here are a few example scientific questions:

1. What is the effect of pre-wean calorie restriction on mean lifetimes?
2. What is the difference in mean lifetimes between mice on a 40 kcal diet compared to those on a 50 kcal diet?
3. What is the effect of high calorie vs low calorie diets on mean lifetimes? We can compute contrasts:

$$
\begin{aligned}
\gamma_{1}= & \mu_{R / R 50}-\mu_{N / R 50} \\
\gamma_{2}= & \mu_{N / R 40}-\frac{1}{2}\left(\mu_{N / R 50}+\mu_{R / R 50}\right) \\
\gamma_{3}= & \frac{1}{4}\left(\mu_{N / R 50}+\mu_{R / R 50}+\mu_{N / R 40}+\mu_{\text {lopro }}\right) \\
& -\frac{1}{2}\left(\mu_{N P}+\mu_{N / N 85}\right)
\end{aligned}
$$

## Contrasts

A linear combination of group means has the form

$$
\gamma=C_{1} \mu_{1}+C_{2} \mu_{2}+\ldots+C_{J} \mu_{J}
$$

where $C_{j}$ are known coefficients and $\mu_{j}$ are the unknown population means.
A linear combination with $C_{1}+C_{2}+\cdots+C_{J}=0$ is a contrast.

Contrast interpretation is usually best if $\left|C_{1}\right|+\left|C_{2}\right|+\cdots+\left|C_{J}\right|=2$, i.e. the positive coefficients sum to 1 and the negative coefficients sum to -1 .

## Inference on Contrasts

Contrast

$$
\gamma=C_{1} \mu_{1}+C_{2} \mu_{2}+\cdots+C_{J} \mu_{J} \quad \text { with } \quad \hat{\gamma}=C_{1} \bar{Y}_{1}+C_{2} \bar{Y}_{2}+\cdots+C_{J} \bar{Y}_{J}
$$

with standard error

$$
S E(\hat{\gamma})=\hat{\sigma} \sqrt{\frac{C_{1}^{2}}{n_{1}}+\frac{C_{2}^{2}}{n_{2}}+\cdots+\frac{C_{J}^{2}}{n_{J}}} .
$$

$p$-values for $H_{0}: \gamma=g_{0}$ vs $H_{A}: \gamma \neq g_{0}$ and posterior probabilities (i.e. $2 P(\gamma>0 \mid y)$ or $2 P(\gamma<0 \mid y)$ ):

$$
t=\frac{g-g_{0}}{S E(g)}, \quad p=2 P\left(T_{n-J}<-|t|\right)
$$

Two-sided equal-tail $100(1-\alpha) \%$ confidence/credible intervals:

$$
g \pm t_{n-J, 1-\alpha / 2} S E(g)
$$

## Contrasts for mice lifetime dataset

For these contrasts:

1. Mean lifetimes for N/R50 and R/R50 diet are different.
2. Mean lifetimes for $N / R 40$ is different than for $N / R 50$ and R/R50 combined.
3. Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie diets combined.

$$
\begin{aligned}
H_{0}: \gamma= & 0 \quad H_{A}: \gamma \neq 0: \\
\gamma_{1}= & \mu_{R / R 50}-\mu_{N / R 50} \\
\gamma_{2}= & \mu_{N / R 40}-\frac{1}{2}\left(\mu_{N / R 50}+\mu_{R / R 50}\right) \\
\gamma_{3}= & \frac{1}{4}\left(\mu_{N / R 50}+\mu_{R / R 50}+\mu_{N / R 40}+\mu_{\text {lopro }}\right) \\
& -\frac{1}{2}\left(\mu_{N P}+\mu_{N / N 85}\right)
\end{aligned}
$$

|  | N/N85 | N/R40 | N/R50 | NP | R/R50 | lopro |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| early rest - none @ 50kcal | 0.00 | 0.00 | -1.00 | 0.00 | 1.00 | 0.00 |
| 40kcal/week - 50kcal/week | 0.00 | 1.00 | -0.50 | 0.00 | -0.50 | 0.00 |
| lo cal - hi cal | -0.50 | 0.25 | 0.25 | -0.50 | 0.25 | 0.25 |
| (STAT587@ISU) |  |  |  | R07 - Contrasts |  |  |

## Fit the Multiple Regression Model

```
m = lm(Lifetime ~ Diet, data = Sleuth3::case0501)
summary (m)
Call:
lm(formula = Lifetime ~ Diet, data = Sleuth3::case0501)
\begin{tabular}{rrrrr} 
Residuals: & & & & \\
Min & \(1 Q\) & Median & 3Q & Max \\
-25.5167 & -3.3857 & 0.8143 & 5.1833 & 10.0143
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline (Intercept) & 32.6912 & 0.8846 & 36.958 & < 2e-16 & *** \\
\hline DietN/R40 & 12.4254 & 1.2352 & 10.059 & < 2e-16 & * \\
\hline DietN/R50 & 9.6060 & 1.1877 & 8.088 & \(1.06 \mathrm{e}-14\) & * \\
\hline DietNP & -5.2892 & 1.3010 & -4.065 & 5.95e-05 & *** \\
\hline DietR/R50 & 10.1945 & 1.2565 & 8.113 & \(8.88 \mathrm{e}-15\) & * \\
\hline Dietlopro & 6.9945 & 1.2565 & 5.567 & \(5.25 \mathrm{e}-08\) & *** \\
\hline \multicolumn{2}{|l|}{Signif. codes: \(0^{\prime * * *}\)} & 0.001 '* & 0.01 & '*' 0.05 & \\
\hline
\end{tabular}
Residual standard error: 6.678 on 343 degrees of freedom Multiple R-squared: 0.4543 , Adjusted R-squared: 0.4463 F-statistic: 57.1 on 5 and 343 DF, p-value: < \(2.2 \mathrm{e}-16\)
```


## Estimate Group Means

| Diet | emmean | SE | df | lower. CL | upper.CL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N/N85 | 32.7 | 0.885 | 343 | 31.0 | 34.4 |
| N/R40 | 45.1 | 0.862 | 343 | 43.4 | 46.8 |
| N/R50 | 42.3 | 0.793 | 343 | 40.7 | 43.9 |
| NP | 27.4 | 0.954 | 343 | 25.5 | 29.3 |
| R/R50 | 42.9 | 0.892 |  | 41.1 | 44.6 |
| lopro | 39.7 | 0.892 | 343 | 37.9 | 41.4 |

Confidence level used: 0.95

```
K_list
$`early rest - none @ 50kcal
[1] 0}00-1 0 1 0 
$`40kcal/week - 50kcal/week`
[1] 0.0 1.0 -0.5 0.0 -0.5 0.0
$`lo cal - hi cal`
[1] -0.50
co = contrast(em, K_list)
# p-values (and posterior tail probabilities)
co
\begin{tabular}{lrrrrrl} 
contrast & estimate & SE & df & t.ratio p.value \\
early rest - none @ 50kcal & 0.589 & 1.19 & 343 & 0.493 & 0.6223 \\
40kcal/week - 50kcal/week & 2.525 & 1.05 & 343 & 2.408 & 0.0166 \\
lo cal - hi cal & 12.450 & 0.78 & 343 & 15.961 & \(<.0001\) \\
& & & & & & \\
\\
\# confidence/credible intervals & & & & & \\
confint(co)
\end{tabular}
\begin{tabular}{lrrrrr} 
& estimate & SE & df & lower.CL & upper.CL \\
contrast \\
early rest - none @ 50kcal & 0.589 & 1.19 & 343 & -1.759 & 2.94 \\
40kcal/week - 50kcal/week & 2.525 & 1.05 & 343 & 0.463 & 4.59 \\
lo cal - hi cal & 12.450 & 0.78 & 343 & 10.915 & 13.98
\end{tabular}
```


## Summary

- Contrasts are linear combinations of means where the coefficients sum to zero
- t-test tools are used to calculate pvalues and confidence intervals


## Sulfur effect on scab disease in potatoes

The experiment was conducted to investigate the effect of sulfur on controlling scab disease in potatoes. There were seven treatments: control, plus spring and fall application of 300, $600,1200 \mathrm{lbs} /$ acre of sulfur. The response variable was percentage of the potato surface area covered with scab averaged over 100 random selected potatoes. A completely randomized design was used with 8 replications of the control and 4 replications of the other treatments.

Cochran and Cox. (1957) Experimental Design (2nd ed). pg96 and Agron. J. 80:712-718 (1988)

Scientific questions:

- Does sulfur have any impact at all?
- What is the difference between spring and fall application of sulfur?
- What is the effect of increased sulfur application?


## Data

| 1 | 9 | trt | 4 | col | sulfur 300 | application | F3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 12 | 0 | 4 | 2 | 0 | (Missing) | 0 |
| 3 | 18 | S6 | 4 | 3 | 600 | spring | S6 |
| 4 | 10 | F12 | 4 | 4 | 1200 | fall | F12 |
| 5 | 24 | S6 | 4 | 5 | 600 | spring | S6 |
| 6 | 17 | S12 | 4 | 6 | 1200 | spring | S12 |
| 7 | 30 | S3 | 4 | 7 | 300 | spring | S3 |
| 8 | 16 | F6 | 4 | 8 | 600 | fall | F6 |
| 9 | 10 | 0 | 3 | 1 | 0 | (Missing) | 0 |
| 10 | 7 | S3 | 3 | 2 | 300 | spring | S3 |
| 11 | 4 | F12 | 3 | 3 | 1200 | fall | F12 |
| 12 | 10 | F6 | 3 | 4 | 600 | fall | F6 |
| 13 | 21 | S3 | 3 | 5 | 300 | spring | S3 |
| 14 | 24 | 0 | 3 | 6 | 0 | (Missing) | 0 |
| 15 | 29 | 0 | 3 | 7 | 0 | (Missing) | 0 |
| 16 | 12 | S6 | 3 | 8 | 600 | spring | S6 |
| 17 | 9 | F3 | 2 | 1 | 300 | fall | F3 |
| 18 | 7 | S12 | 2 | 2 | 1200 | spring | S12 |
| 19 | 18 | F6 | 2 | 3 | 600 | fall | F6 |
| 20 | 30 | 0 | 2 | 4 | 0 | (Missing) | 0 |
| 21 | 18 | F6 | 2 | 5 | 600 | fall | F6 |
| 22 | 16 | S12 | 2 | 6 | 1200 | spring | S12 |
| 23 | 16 | F3 | 2 | 7 | 300 | fall | F3 |
| 24 | 4 | F12 | 2 | 8 | 1200 | fall | F12 |
| 25 | 9 | S3 | 1 | 1 | 300 | spring | S3 |
| 26 | 18 | 0 | 1 | 2 | 0 | (Missing) | 0 |
| 27 | 17 | S12 | 1 | 3 | 1200 | spring | S12 |
| 28 | 19 | S6 | 1 | 4 | 600 | spring | S6 |

## Design

Completely randomized design potato scab experiment

|  | F3 | O | S6 | F12 | S6 | S12 | S3 | F6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | の | O | S3 | F12 | F6 | S3 | O | O | S6 |
| ~ | F3 | S12 | F6 | O | F6 | S12 | F3 | F12 |  |
| S3 | O | S12 | S6 | O | F12 | O | F3 |  |  |

## Design

## Treatment visualization



## Data



## Data



## Data



## Data



## Model

$Y_{i j}:$ avg $\%$ of surface area covered with scab for plot $i$ in treatment $j$ for $j=1, \ldots, 7$.

Assume $Y_{i j} \stackrel{i n d}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$.
Hypotheses:

- Difference amongst any means:

One-way ANOVA F-test

- Any effect:

Contrast: control vs sulfur

- Fall vs spring:

Contrast: fall vs spring applications

- Sulfur level:

Contrast: linear trend

## Contrasts

- Sulfur effect: Any sulfur vs none

$$
\begin{aligned}
\gamma & =\frac{1}{6}\left(\mu_{F 12}+\mu_{F 6}+\mu_{F 3}+\mu_{S 3}+\mu_{S 6}+\mu_{S 12}\right)-\mu_{O} \\
& =\frac{1}{6}\left(\mu_{F 12}+\mu_{F 6}+\mu_{F 3}+\mu_{S 3}+\mu_{S 6}+\mu_{S 12}-6 \mu_{O}\right)
\end{aligned}
$$

- Fall vs spring: Contrast comparing fall vs spring applications

$$
\begin{aligned}
\gamma & =\frac{1}{3}\left(\mu_{F 12}+\mu_{F 6}+\mu_{F 3}\right)+0 \mu_{O}-\frac{1}{3}\left(\mu_{S 3}+\mu_{S 6}+\mu_{S 12}\right) \\
& =\frac{1}{3}\left[1 \mu_{F 12}+1 \mu_{F 6}+1 \mu_{F 3}+0 \mu_{O}-1 \mu_{S 3}-1 \mu_{S 6}-1 \mu_{S 12}\right]
\end{aligned}
$$

## Contrasts (cont.)

- Sulfur linear trend
- The group sulfur levels $\left(X_{j}\right)$ are $12,6,3,0,3,6$, and 12 (100 lbs/acre)
- and a linear trend contrast is $X_{j}-\bar{X}$

$$
\left.\begin{array}{rl}
X_{i} & 12 \\
6 & 3 \\
0 & 0 \\
3 & 3 \\
6 & 6 \\
\hline X_{i} & 6 \\
0 & -3 \\
-6 & -3 \\
0 & 6
\end{array} \right\rvert\,
$$

| Trt | F12 | F6 | F3 | O | S3 | S6 | S12 | Div |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfur v control | 1 | 1 | 1 | -6 | 1 | 1 | 1 | 6 |
| Fall v Spring | 1 | 1 | 1 | 0 | -1 | -1 | -1 | 3 |
| Linear Trend | 6 | 0 | -3 | -6 | -3 | 0 | 6 | 1 |

```
K =
                                    F12 F6 F3 0 S3 S6 S12
list("sulfur - control" = c( 1, 1, 1,-6, 1, 1, 1)/6,
        "fall - spring" =c( 1, 1, 1, 0,-1,-1, -1)/3
        "linear trend" =c( 6, 0,-3,-6,-3, 0, 6)/1)
m = lm(inf ~ treatment, data = d)
anova(m)
Analysis of Variance Table
Response: inf
    Df Sum Sq Mean Sq F value Pr(>F)
treatment 6 972.34 162.057 3.6081 0.01026 *
Residuals 25 1122.88 44.915
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



| treatment | emmean | SE | df | lower.CL | upper.CL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F12 | 5.75 | 3.35 | 25 | -1.15 | 12.7 |
| F6 | 15.50 | 3.35 | 25 | 8.60 | 22.4 |
| F3 | 9.50 | 3.35 | 25 | 2.60 | 16.4 |
| 0 | 22.62 | 2.37 | 25 | 17.74 | 27.5 |
| S3 | 16.75 | 3.35 | 25 | 9.85 | 23.7 |
| S6 | 18.25 | 3.35 | 25 | 11.35 | 25.2 |
| S12 | 14.25 | 3.35 | 25 | 7.35 | 21.2 |
| Confidence level used: 0.95 |  |  |  |  |  |
| ```co <- contrast(em, K) confint(co)``` |  |  |  |  |  |


|  | estimate | -9.29 | 2.74 | 25 | -14.9 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| sulfur - control | -6.657 |  |  |  |  |
| fall - spring | -6.17 | 2.74 | 25 | -11.8 | -0.532 |
| linear trend | -94.50 | 34.82 | 25 | -166.2 | -22.779 |

Confidence level used: 0.95


## Summary

For this particular data analysis

- Significant differences in means between the groups (ANOVA $F_{6,25}=3.61 \mathrm{p}=0.01$ )
- Having sulfur was associated with a reduction in scab $\%$ of $9(4,15)$ compared to no sulfur
- Fall application reduced scab \% by $6(0.5,12)$ compared to spring application
- Linear trend in sulfur was significant $(p=0.01)$
- Concerned about spatial correlation among columns
- Consider a logarithm of the response
- CI for F12 (-1.2, 12.7)
- Non-constant variance (residuals vs predicted, sulfur, application)


# R08 - Experimental design 

STAT 587 (Engineering)
lowa State University

March 30, 2021

## Random samples and random treatment assignment

Recall that the objective of data analysis is often to make an inference about a population based on a sample. For the inference to be statistically valid, we need a random sample from the population.

In order to make a causal statment, the levels of the explanatory variables need to be randomly assigned to the experimental units.

- random assignment $\rightarrow$ randomized experiment
- non-random assignment $\rightarrow$ observational study


## Data collection

|  | Treatment randomly assigned? |  |
| :--- | :--- | :--- |
| Sample | No <br> Observational study | Yes <br> Randomized experiment |
| Not random | No inference to population <br> No cause-and-effect | No inference to population <br> Yes cause-and-effect |
|  | Yes inference to population <br> No cause-and-effect | Yes inference to population <br> Yes cause-and-effect |

## Strength of wood glue

You are interested in testing two different wood glues:

- Gorilla Wood Glue
- Titebond 1413 Wood Glue

On a scarf joint:


So you collect up some wood, glue the pieces together, and determine the weight required to break the joint.
(Lots of details are missing.)
Inspiration: https://woodgears.ca/joint_strength/glue.html

## Completely Randomized Design (CRD)

Suppose I have 8 pieces of wood laying around. I cut each piece and randomly use either Gorilla or Titebond glue to recombine the pieces. I do the randomization in such a way that I have exactly 4 Gorilla and 4 Titebond results, e.g.
\# A tibble: $8 \times 2$
woodID glue
<chr> <chr>
1 wood1 Gorilla
2 wood2 Titebond
3 wood3 Gorilla
4 wood4 Titebond
5 wood5 Titebond
6 wood6 Gorilla
7 wood7 Titebond
8 wood8 Gorilla

This is called a completely randomized design (CRD). Because all treatment (combinations) have the same number of replicates, the design is balanced. Because all treatment (combinations) are repeated, the design is

## Visualize the data



## Model

Let

- $P_{w}$ be the weight (pounds) needed to break wood $w$,
- $T_{w}$ be an indicator that the Titebond glue was used on wood $w$, i.e.

$$
T_{w}=\mathrm{I}\left(\text { glue }_{w}=\text { Titebond }\right) .
$$

Then a regression model for these data is

$$
P_{w} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} T_{w}, \sigma^{2}\right) .
$$

## Check model assumptions




COOK's D Plot



## Obtain statistics

```
coefficients(m)
    (Intercept) glueTitebond
        243.6971 52.8206
summary (m)$r.squared
[1] 0.8531122
confint(m)
    2.5% 97.5 %
(Intercept) 228.21529 259.17885
glueTitebond 30.92606 74.71514
emmeans(m, ~glue)
\begin{tabular}{lrrrrr} 
glue & emmean & SE df & lower.CL & upper.CL \\
Gorilla & 244 & 6.33 & 6 & 228 & 259 \\
Titebond & 297 & 6.33 & 6 & 281 & 312
\end{tabular}
Confidence level used: 0.95
```


## Interpret results

A randomized experiment was designed to evaluate the effectiveness of Gorilla and Titebond in preventing failures in scarf joints cut at a 20 degree angle through 1 " $\times 2$ " spruce with 4 replicates for each glue type. The mean break weight (lbs) was 244 with a $95 \% \mathrm{Cl}$ of $(228,259)$ for Gorilla and $297(281,312)$ for Titebond. Titebond glue caused an increase in break weight of $53(31,75)$ Ibs compared to Gorilla Glue. This difference accounted for $85 \%$ of the variability in break weight.

## Randomized complete block design (RCBD)

Suppose the wood actually came from two different types: Maple and Spruce. And perhaps you have reason to believe the glue will work differently depending on the type of wood. In this case, you would want to block by wood type and perform the randomization within each block, i.e.

| \# A tibble: 8 x 3 |  |  |
| :--- | :--- | :--- |
| woodID | woodtype | glue |
| <chr> | <fct> | <chr> |
| 1 wood1 | Spruce | Gorilla |
| 2 wood2 | Spruce | Titebond |
| 3 wood3 | Spruce | Gorilla |
| 4 wood4 | Spruce | Titebond |
| 5 wood5 | Maple | Titebond |
| 6 wood6 | Maple | Gorilla |
| 7 wood7 | Maple | Titebond |
| 8 wood8 | Maple | Gorilla |

This is called a randomized complete block design (RCBD). If all treatment combinations exist, then the design is complete. If a treatment combination is missing, then the design is incomplete.

## Visualize the data



## Visualize the data - a more direct comparison



## Main effects model

Let

- $P_{w}$ be the weight (pounds) needed to break wood $w$
- $T_{w}$ be an indicator that Titebond glue was used on wood $w$, and
- $M_{w}$ be an indicator that wood $w$ was Maple.

Then a main effects model for these data is

$$
P_{w} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} T_{w}+\beta_{2} M_{w}, \sigma^{2}\right)
$$

## Perform analysis

```
Call:
lm(formula = pounds ~ glue + woodtype, data = d)
\begin{tabular}{l} 
Residuals: \\
1 \\
1 \\
11.146
\end{tabular}\(-18.384\)
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline (Intercept) & 241.366 & 8.294 & 29.100 & 8.98e-07 & *** \\
\hline glueTitebond & 52.821 & 9.578 & 5.515 & 0.00268 & ** \\
\hline woodtypeMaple & 4.662 & 9.578 & 0.487 & 0.64702 & \\
\hline Signif. codes: & 0 '***' & \(1{ }^{\text {'**' }}\) & \(0.01{ }^{\prime} *\) & *' 0.05 & 0.1 \\
\hline
\end{tabular}
Residual standard error: 13.54 on 5 degrees of freedom
Multiple R-squared: 0.8598,Adjusted R-squared: 0.8037
F-statistic: 15.33 on 2 and 5 DF, p-value: 0.007365
        2.5 % 97.5 %
(Intercept) 220.04467 262.68760
glueTitebond 28.20070 77.44051
woodtypeMaple -19.95804 29.28177
```


## Replication

Since there are more than one observation for each woodtype-glue combination, the design is replicated:

```
d %>% group_by(woodtype, glue) %>% summarize(n = n())
# A tibble: 4 x 3
# Groups: woodtype [2]
    woodtype glue n
    <fct> <chr> <int>
1 \text { Spruce Gorilla 2}
2 \text { Spruce Titebond 2}
3 \text { Maple Gorilla 2}
4 Maple Titebond 2
```

When the design is replicated, we can consider assessing an interaction.

## Interaction model

Let

- $P_{w}$ be the weight (pounds) needed to break wood $w$
- $T_{w}$ be an indicator that Titebond glue was used on wood $w$, and
- $M_{w}$ be an indicator that wood $w$ was Maple.

Then a model with the interaction for these data is

$$
P_{w} \stackrel{i n d}{\sim} N\left(\beta_{0}+\beta_{1} T_{w}+\beta_{2} M_{w}+\beta_{3} T_{w} M_{w}, \sigma^{2}\right)
$$

## Assessing an interaction using a t-test

```
Call:
lm(formula = pounds ~ glue * woodtype, data = d)
\begin{tabular}{lrrrrrrr} 
Residuals: \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
10.379 & -17.616 & -10.379 & 17.616 & -4.670 & -4.054 & 4.670 & 4.054
\end{tabular}
Coefficients:
```




```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.1 on 4 degrees of freedom
Multiple R-squared: 0.8605,Adjusted R-squared: 0.7558
F-statistic: 8.223 on 3 and 4 DF, p-value: 0.03475
```


## Assessing an interaction using an F-test

```
anova(m)
Analysis of Variance Table
Response: pounds
    Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
glue 1 5580.0 5580.0 24.4582 0.007786 **
woodtype 1
glue:woodtype 1 4 4.7 4.0.7 0.0207 0.892654
Residuals 4 912.6 228.1
Signif. codes: 0 '***'0.001 '**' 0.01 '*'0.05 '.'0.1 ' ' 1
drop1(m, test='F')
Single term deletions
Model:
pounds ~ glue * woodtype
    Df Sum of Sq RSS AIC F value }\operatorname{Pr}(>F
<none> 912.58 45.895
\begin{tabular}{llllllll} 
glue:woodtype 1 & 4.714 & 917.30 & 43.936 & 0.0207 & 0.8927
\end{tabular}
```


## What if this had been your data?



## Assessing an interaction using a t-test

```
Call:
lm(formula = pounds ~ glue * woodtype, data = d)
\begin{tabular}{crrrrrrr} 
Residuals: \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1.657 & -1.657 & -10.312 & 10.312 & -4.741 & 23.986 & 4.741 & -23.986
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrl} 
(Intercept) & Estimate & 252.26 & 13.29 & 18.976 & \(4.54 \mathrm{e}-05\)
\end{tabular}\({ }^{* * *}\)
Residual standard error: 18.8 on 4 degrees of freedom
Multiple R-squared: 0.7544,Adjusted R-squared: 0.5702
F-statistic: 4.095 on 3 and 4 DF, p-value: 0.1034
```


## Unreplicated study

Suppose you now have

- 5 glue choices
- 4 different types of wood with
- 5 samples of each type of wood.

Thus you can only run each glue choice once on each type of wood.
Then you can run an unreplicated RCBD.

## Visualize


glue

- Carpenter's
- Gorilla
- Hot glue
+ Titebond
- Weldbond


## Fit the main effects (or additive) model

```
m <- lm(pounds ~ glue + woodtype, data = d)
anova(m)
Analysis of Variance Table
Response: pounds
glue }\quad4\quad754.3 188.58 0.4332 0.7822
woodtype }\begin{array}{lllllll}{3}&{465.1}&{155.04}&{0.3562}&{0.7857}
Residuals 12 5223.7 435.31
```


## Fit the main effects (or additive) model

```
Call:
lm(formula = pounds ~ glue + woodtype, data = d)
\begin{tabular}{lrrrrr} 
Residuals: \\
Min & 1Q & Median & 3Q & Max \\
-33.498 & -10.327 & 5.084 & 10.989 & 23.325
\end{tabular}
Coefficients:
(Intercept) 260.7220 13.1956 19.758 1.61e-10 ***
glueGorilla -2.7764 14.7531 -0.188 0.854
glueHot glue }\begin{array}{lllll}{0.2159}&{14.7531}&{0.015}&{0.989}
glueTitebond }\begin{array}{lllll}{-14.4517}&{14.7531}&{-0.980}&{0.347}
glueWeldbond }\begin{array}{lllll}{3.1903}&{14.7531}&{0.216}&{0.832}
woodtypeMaple -2.8726 13.1956 -0.218 0.831
woodtypeOak 
woodtypeSpruce -10.8349 13.1956 -0.821 0.428
```



```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.86 on 12 degrees of freedom
Multiple R-squared: 0.1893,Adjusted R-squared: -0.2837
F-statistic: 0.4002 on 7 and 12 DF, p-value: 0.8845
```


## Fit the full (with interaction) model

```
Warning in anova.lm(m): ANOVA F-tests on an essentially perfect fit are
unreliable
Analysis of Variance Table
Response: pounds
    Df Sum Sq Mean Sq F value Pr (>F)
glue 4 754.3 188.58
woodtype 3 465.1 155.04
glue:woodtype 12 5223.7 435.31
Residuals 0 0.0
```


## Fit the full (with interaction) model

| Call: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| lm(formula $=$ pounds $\sim$ glue * woodtype, data $=$ d) |  |  |  |  |
| Residuals: |  |  |  |  |
| ALL 20 residuals are 0: no residual degrees of freedom! |  |  |  |  |
| Coefficients: |  |  |  |  |
|  | Estimate | Std. Error t | value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | 265.7301 | NA | NA | NA |
| glueGorilla | 0.1451 | NA | NA | NA |
| glueHot glue | 18.2476 | NA | NA | NA |
| glueTitebond | -21.9394 | NA | NA | NA |
| glueWeldbond | -35.3158 | NA | NA | NA |
| woodtypeMaple | -38.4658 | NA | NA | NA |
| woodtypeOak | -1.0001 | NA | NA | NA |
| woodtypeSpruce | 7.4822 | NA | NA | NA |
| glueGorilla:woodtypeMaple | 40.6031 | NA | NA | NA |
| glueHot glue:woodtypeMaple | 19.0424 | NA | NA | NA |
| glueTitebond:woodtypeMaple | 43.2335 | NA | NA | NA |
| glueWeldbond:woodtypeMaple | 75.0869 | NA | NA | NA |
| glueGorilla:woodtypeOak | -14.1101 | NA | NA | NA |
| glueHot glue:woodtypeOak | -40.0202 | NA | NA | NA |
| glueTitebond:woodtypeOak | 21.3197 | NA | NA | NA |
| glueWeldbond:woodtypeOak | 46.5929 | NA | NA | NA |
| glueGorilla:woodtypeSpruce | -38.1789 | NA | NA | NA |
| glueHot glue:woodtypeSpruce | -51.1490 | NA | NA | NA |
| glueTitebond:woodtypeSpruce | -34.6024 | NA | NA | NA |

## Summary

- Designs:
- Completely randomized design (CRD)
- Randomized complete block design (RCBD)
- Deviations
- Unbalanced
- Incomplete
- Unreplicated


# R09 - Analysis of Experiments with Two Factors <br> Two-way ANOVA and Contrasts 

STAT 587 (Engineering)
lowa State University

March 30, 2021

## Two factors

Consider the question of the affect of variety and density on yield under various experimental designs:

- Balanced, complete design
- Unbalanced, complete
- Incomplete

We will also consider the problem of finding the density that maximizes yield.

## Data

An experiment was run on tomato plants to determine the effect of

- 3 different varieties $(A, B, C)$ and
- 4 different planting densities $(10,20,30,40)$
on yield.

A balanced completely randomized design (CRD) with replication was used.

- complete: each treatment (variety $\times$ density) is represented
- balanced: each treatment has the same number of replicates
- randomized: treatment was randomly assigned to the plot
- replication: each treatment is represented more than once

This is also referred to as a full factorial or fully crossed design.

## Hypotheses

- How does variety affect mean yield?
- How is the mean yield for variety A different from B on average?
- How is the mean yield for variety $A$ different from $B$ at a particular value for density?
- How does density affect mean yield?
- How is the mean yield for density 10 different from density 20 on average?
- How is the mean yield for density 10 different from density 20 at a particular value for variety?
- How does density affect yield differently for each variety?

For all of these questions, we want to know

- is there any effect and
- if yes, what is the magnitude and direction of the effect.

Confidence/credible intervals can answer these questions.


## Summary statistics



## Two-way ANOVA

- Setup: Two categorical explanatory variables with I and J levels respectively
- Model:

$$
Y_{i j k} \stackrel{i n d}{\sim} N\left(\mu_{i j}, \sigma^{2}\right)
$$

where $Y_{i j k}$ is the

- $k$ th observation at the
- $i$ th level of variable 1 (variety) with $i=1, \ldots, \mathrm{I}$ and the
- $j$ th level of variable 2 (density) with $j=1, \ldots, \mathrm{~J}$.

Consider the models:

- Additive/Main effects: $\mu_{i j}=\mu+\nu_{i}+\delta_{j}$
- Cell-means: $\mu_{i j}=\mu+\nu_{i}+\delta_{j}+\gamma_{i j}$

|  | 10 | 20 | 30 | 40 |
| :---: | :---: | :---: | :---: | :---: |
| A | $\mu_{11}$ | $\mu_{12}$ | $\mu_{13}$ | $\mu_{14}$ |
| B | $\mu_{21}$ | $\mu_{22}$ | $\mu_{23}$ | $\mu_{24}$ |
| C | $\mu_{31}$ | $\mu_{32}$ | $\mu_{33}$ | $\mu_{34}$ |

## As a regression model

1. Assign a reference level for both variety (C) and density (40).
2. Let $V_{i}$ and $D_{i}$ be the variety and density for observation $i$.
3. Build indicator variables, e.g. $\mathrm{I}\left(V_{i}=A\right)$ and $\mathrm{I}\left(D_{i}=10\right)$.
4. The additive/main effects model:

$$
\begin{aligned}
\mu_{i}= & \beta_{0} \\
& +\beta_{1} \mathrm{I}\left(V_{i}=A\right)+\beta_{2} \mathrm{I}\left(V_{i}=B\right) \\
& +\beta_{3} \mathrm{I}\left(D_{i}=10\right)+\beta_{4} \mathrm{I}\left(D_{i}=20\right)+\beta_{5} \mathrm{I}\left(D_{i}=30\right) .
\end{aligned}
$$

5. The cell-means model:

$$
\begin{aligned}
\mu_{i}= & \beta_{0} \\
& +\beta_{1} \mathrm{I}\left(V_{i}=A\right)+\beta_{2} \mathrm{I}\left(V_{i}=B\right) \\
& +\beta_{3} \mathrm{I}\left(D_{i}=10\right)+\beta_{4} \mathrm{I}\left(D_{i}=20\right)+\beta_{5} \mathrm{I}\left(D_{i}=30\right) \\
& +\beta_{6} \mathrm{I}\left(V_{i}=A\right) \mathrm{I}\left(D_{i}=10\right)+\beta{ }_{7} \mathrm{I}\left(V_{i}=A\right) \mathrm{I}\left(D_{i}=20\right)+\beta{ }_{8} \mathrm{I}\left(V_{i}=A\right) \mathrm{I}\left(D_{i}=30\right) \\
& +\beta_{9} \mathrm{I}\left(V_{i}=B\right) \mathrm{I}\left(D_{i}=10\right)+\beta_{10} \mathrm{I}\left(V_{i}=B\right) \mathrm{I}\left(D_{i}=20\right)+\beta_{11} \mathrm{I}\left(V_{i}=B\right) \mathrm{I}\left(D_{i}=30\right)
\end{aligned}
$$

## ANOVA Table

ANOVA Table - Additive/Main Effects model

| Source | SS | df | MS | F |
| :---: | :---: | :---: | :---: | :---: |
| Factor A | SSA | $(\mathrm{I}-1)$ | SSA/(I-1) | MSA/MSE |
| Factor B | SSB | $(\mathrm{J}-1)$ | SSB/(J-1) | MSB/MSE |
| Error | SSE | $\mathrm{n}-\mathrm{I}-\mathrm{J}+1$ | SSE/(n-I-J+1) |  |
| Total | SST | $\mathrm{n}-1$ |  |  |

ANOVA Table - Cell-means model

| Source | SS | df | MS |  |
| :---: | :---: | :---: | :---: | :---: |
| Factor A | SSA | $\mathrm{I}-1$ | SSA/(I-1) | MSA/MSE |
| Factor B | SSB | $\mathrm{J}-1$ | SSB/(J-1) | MSB/MSE |
| Interaction AB | SSAB | $(\mathrm{I}-1)(\mathrm{J}-1)$ | SSAB /(I-1)(J-1) | MSAB/MSE |
| Error | SSE | $\mathrm{n}-\mathrm{IJ}$ | SSE/(n-IJ) |  |
| Total | SST | $\mathrm{n}-1$ |  |  |

## Two-way ANOVA in $R$

```
tomato$Density = factor(tomato$Density)
m = lm(Yield~Variety+Density, tomato)
drop1(m, test="F")
Single term deletions
Model:
Yield ~ Variety + Density
        Df Sum of Sq RSS AIC F value Pr (>F)
<none> 46.07 20.880
Variety 2 327.60 373.67 92.235 106.659 2.313e-14 ***
Density 3 86.69 132.76 52.980 18.816 4.690e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.'0.1 ' ' }
m = lm(Yield~Variety*Density, tomato)
drop1(m, scope = ~Variety+Density+Variety:Density, test="F")
Single term deletions
Model:
\begin{tabular}{lrrrrrrr} 
Yield ~ Variety * Density \\
& Df Sum of Sq & RSS & AIC F value & Pr \((>F)\) \\
<none> & & & 38.040 & 25.984 & & \\
Variety & 2 & 104.749 & 142.789 & 69.603 & 33.0438 & \(1.278 \mathrm{e}-07\) & *** \\
Density & 3 & 19.809 & 57.849 & 35.076 & 4.1660 & 0.01648 & * \\
Variety:Density & 6 & 8.032 & 46.072 & 20.880 & 0.8445 & 0.54836
\end{tabular}
```


## Additive vs cell-means

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not significant. Remember that an insignificant test does not prove that there is no interaction.

|  | Additive | Cell-means |
| :--- | :---: | :---: |
| Interpretation | Direct | More complicated |
| Estimate of $\sigma^{2}$ | Biased | Unbiased |

We will continue using the cell-means model to answer the scientific questions of interest.


## Two-way ANOVA in R

```
tomato$Density = factor(tomato$Density)
m = lm(Yield~Variety*Density, tomato)
anova (m)
Analysis of Variance Table
Response: Yield
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>\mathrm{F})\) & \\
\hline Variety & 2 & 327.60 & 163.799 & 103.3430 & \(1.608 \mathrm{e}-12\) & *** \\
\hline Density & 3 & 86.69 & 28.896 & 18.2306 & \(2.212 \mathrm{e}-06\) & *** \\
\hline Variety: Density & 6 & 8.03 & 1.339 & 0.8445 & 0.5484 & \\
\hline Residuals & 24 & 38.04 & 1.585 & & & \\
\hline Signif. codes: & 0 & ***' 0 & \(001{ }^{\prime *}{ }^{\prime}\) & \(0.01{ }^{\prime} *\) & 0.05 '.' & 0.1 \\
\hline
\end{tabular}
```


## Variety comparison

```
library(emmeans)
emmeans(m, pairwise~Variety)
$emmeans
    Variety emmean SE df lower.CL upper.CL
C 18.1 0.363 24 17.4 18.9
A 11.3 0.363 24 10.6 12.1
\begin{tabular}{llllll} 
B & 12.2 & \(0.363 \quad 24\) & 11.5 & 13.0
\end{tabular}
Results are averaged over the levels of: Density
Confidence level used: 0.95
$contrasts
    contrast estimate SE df t.ratio p.value
    C - A
    6.792 0.514 24 13.214 <.0001
C - B }\quad5.917 0.514 24 11.512 <.0001
A - B 
Results are averaged over the levels of: Density
P value adjustment: tukey method for comparing a family of 3 estimates
```


## Density comparison


emmeans(m, pairwise~Variety*Density)

| \$emmeans |  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Variety |  |  |  |  |  |  |
| Censity | emmean | SE | df | lower.CL | upper.CL |  |
| C | 10 | 16.30 | 0.727 | 24 | 14.80 | 17.8 |
| A | 10 | 9.20 | 0.727 | 24 | 7.70 | 10.7 |
| B | 10 | 8.93 | 0.727 | 24 | 7.43 | 10.4 |
| C | 20 | 18.10 | 0.727 | 24 | 16.60 | 19.6 |
| A | 20 | 12.43 | 0.727 | 24 | 10.93 | 13.9 |
| B | 20 | 12.63 | 0.727 | 24 | 11.13 | 14.1 |
| C | 30 | 19.93 | 0.727 | 24 | 18.43 | 21.4 |
| A | 30 | 12.90 | 0.727 | 24 | 11.40 | 14.4 |
| B | 30 | 14.50 | 0.727 | 24 | 13.00 | 16.0 |
| C | 40 | 18.17 | 0.727 | 24 | 16.67 | 19.7 |
| A | 40 | 10.80 | 0.727 | 24 | 9.30 | 12.3 |
| B | 40 | 12.77 | 0.727 | 24 | 11.27 | 14.3 |

Confidence level used: 0.95
\$contrasts

| contrast | estimate | SE df | t.ratio | p. value |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| C $10-$ A 10 | 7.1000 | 1.03 | 24 | 6.907 | $<.0001$ |
| C $10-$ B 10 | 7.3667 | 1.03 | 24 | 7.166 | $<.0001$ |
| C $10-$ C 20 | -1.8000 | 1.03 | 24 | -1.751 | 0.8276 |
| C $10-$ A 20 | 3.8667 | 1.03 | 24 | 3.762 | 0.0356 |
| C $10-$ B 20 | 3.6667 | 1.03 | 24 | 3.567 | 0.0543 |
| C $10-$ C 30 | -3.6333 | 1.03 | 24 | -3.535 | 0.0582 |
| C $10-$ A 30 | 3.4000 | 1.03 | 24 | 3.308 | 0.0932 |
| C $10-$ B 30 | 1.8000 | 1.03 | 24 | 1.751 | 0.8276 |

## Summary

- Use emmeans to answer questions of scientific interest.
- Check model assumptions
- Consider alternative models, e.g. treating density as continuous


## Unbalanced design

Suppose for some reason that a variety B, density 30 sample was contaminated. Although you started with a balanced design, the data is now unbalanced. Fortunately, we can still use the tools we have used previously.


## Summary statistics



## Two-way ANOVA in R

| Analysis of Variance Table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Response: Yield |  |  |  |  |  |  |
|  | Df | Sum Sq | Mean Sq | F value | $\operatorname{Pr}(>F)$ |  |
| Variety | 2 | 329.99 | 164.994 | 102.343 | 3.552e-12 | *** |
| Density | 3 | 84.45 | 28.150 | 17.461 | $3.947 \mathrm{e}-06$ | *** |
| Variety:Density | 6 | 8.80 | 1.467 | 0.910 | 0.5052 |  |
| Residuals | 23 | 37.08 | 1.612 |  |  |  |
| Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * * ' 0.01 ~ ' * ' ~} 0.05{ }^{\prime} .{ }^{\prime} 0.1$ |  |  |  |  |  |  |

## Variety comparison



## Density comparison


emmeans(m, pairwise~Variety*Density)


## Unbalanced Summary

The analysis can be completed just like the balanced design using emmeans to answer scientific questions of interest.

## Incomplete design

Suppose none of the samples from variety B, density 30 were obtained. Now the analysis becomes more complicated.


## Summary statistics



## Treat as a One-way ANOVA

When the design is incomplete, use a one-way ANOVA combined with contrasts to answer questions of interest. For example, to compare the average difference between B and $C$, we want to only compare at densities 10,20 , and 40 .

|  | 10 | 20 | 30 | 40 |
| :---: | :---: | :---: | :---: | :---: |
| A | $\mu_{11}$ | $\mu_{12}$ | $\mu_{13}$ | $\mu_{14}$ |
| B | $\mu_{21}$ | $\mu_{22}$ |  | $\mu_{24}$ |
| C | $\mu_{31}$ | $\mu_{32}$ | $\mu_{33}$ | $\mu_{34}$ |

Thus, the contrast is

$$
\begin{aligned}
\gamma & =\frac{1}{3}\left(\mu_{31}+\mu_{32}+\mu_{34}\right)-\frac{1}{3}\left(\mu_{21}+\mu_{22}+\mu_{24}\right) \\
& =\frac{1}{3}\left(\mu_{31}+\mu_{32}+\mu_{34}-\mu_{21}-\mu_{22}-\mu_{24}\right)
\end{aligned}
$$

## The Regression model

The regression model here considers variety-density combination as a single explanatory variable with 11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40. Let C40 be the reference level. For observation $i$, let

- $Y_{i}$ be the yield
- $V_{i}$ be the variety
- $D_{i}$ be the density

The model is then $Y_{i} \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right)$ and

$$
\begin{aligned}
\mu_{i} \quad & =\beta_{0} \\
& +\beta_{1} \mathrm{I}\left(V_{i}=A, D_{i}=10\right)+\beta_{2} \mathrm{I}\left(V_{i}=A, D_{i}=20\right)+\beta_{3} \mathrm{I}\left(V_{i}=A, D_{i}=30\right)+\beta_{4} \mathrm{I}\left(V_{i}=A, D_{i}=40\right) \\
& +\beta_{5} \mathrm{I}\left(V_{i}=B, D_{i}=10\right)+\beta_{6} \mathrm{I}\left(V_{i}=B, D_{i}=20\right) \\
& +\beta_{8} \mathrm{I}\left(V_{i}=C, D_{i}=10\right)+\beta_{9} \mathrm{I}\left(V_{i}=C, D_{i}=20\right)+\beta_{10} \mathrm{I}\left(V_{i}=C, D_{i}=30\right)
\end{aligned}
$$

## Two-way ANOVA in R

```
m <- lm(Yield ~ Variety*Density, data=tomato_incomplete)
anova(m)
Analysis of Variance Table
Response: Yield
Variety 2 347.38 173.691 104.462 5.868e-12 ***
Density 3 66.65 22.218 13.362 3.514e-05 ***
Variety:Density 5 7 7.06 1.412 0.849 0.53
Residuals }22\quad36.58\quad1.66
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

How can you tell the design is not complete?

## One-way ANOVA in $R$

```
m = lm(Yield~Variety:Density, tomato_incomplete)
anova(m)
Analysis of Variance Table
Response: Yield
    Df Sum Sq Mean Sq F value Pr(>F)
Variety:Density 10 421.09 42.109 25.326 8.563e-10 ***
Residuals }22\quad36.58\quad1.66
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
```


## Contrasts

```
m = lm(Yield ~ VarietyDensity, tomato_incomplete)
em <- emmeans(m, ~ VarietyDensity)
contrast(em, method = list(
# A10 A20 A30 A40 B10 B20 B40 C10 C20 C30 C40
"C-B" = c( 0, 0, 0, 0, -1, -1, -1, 1, 1, 0, 1)/3,
"C-A" = c( -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1)/4,
"B-A" = c( -1, -1, 0, -1, 1, 1, 1, 0, 0, 0, 0)/3)) %>%
    confint
    contrast estimate SE df lower.CL upper.CL
C-B 
C-A 6.792 0.526 22 5.700 7.88
B-A 0.633 0.608 22 -0.627 1.89
Confidence level used: 0.95
```

```
m = lm(Yield~Variety:Density, tomato_incomplete)
emmeans(m, pairwise~Variety:Density) # We could have used the VarietyDensity model, but this looks nicer
$emmeans
    Variety Density emmean SE df lower.CL upper.CL
\begin{tabular}{lllllll} 
C & 10 & 16.30 & 0.744 & 22 & 14.76 & 17.8
\end{tabular}
\begin{tabular}{lllllll} 
A & 10 & 9.20 & 0.744 & 22 & 7.66 & 10.7
\end{tabular}
\begin{tabular}{lllllll} 
B & 10 & 8.93 & 0.744 & 22 & 7.39 & 10.5
\end{tabular}
\begin{tabular}{lllllll} 
C & 20 & 18.10 & 0.744 & 22 & 16.56 & 19.6
\end{tabular}
\begin{tabular}{lllllll} 
A & 20 & 12.43 & 0.744 & 22 & 10.89 & 14.0
\end{tabular}
\begin{tabular}{lllllll} 
B & 20 & 12.63 & 0.744 & 22 & 11.09 & 14.2
\end{tabular}
\begin{tabular}{lllllll} 
C & 30 & 19.93 & 0.744 & 22 & 18.39 & 21.5
\end{tabular}
\begin{tabular}{lllllll} 
A & 30 & 12.90 & 0.744 & 22 & 11.36 & 14.4
\end{tabular}
\begin{tabular}{lllllll} 
C & 40 & 18.17 & 0.744 & 22 & 16.62 & 19.7
\end{tabular}
\begin{tabular}{rrrrrrr} 
A & 40 & 10.80 & 0.744 & 22 & 9.26 & 12.3 \\
\(B\) & 40 & 12.77 & 0.744 & 22 & 11.22 & 14.3
\end{tabular}
Confidence level used: 0.95
\$contrasts
\begin{tabular}{llrrrrr} 
contrast & estimate & SE df & t.ratio & p. value \\
C \(10-\) A 10 & 7.1000 & 1.05 & 22 & 6.744 & \(<.0001\) \\
C \(10-\) B 10 & 7.3667 & 1.05 & 22 & 6.997 & \(<.0001\) \\
C \(10-\) C 20 & -1.8000 & 1.05 & 22 & -1.710 & 0.8157 \\
C \(10-\) A 20 & 3.8667 & 1.05 & 22 & 3.673 & 0.0407 \\
C \(10-\) B 20 & 3.6667 & 1.05 & 22 & 3.483 & 0.0606 \\
C \(10-\) C 30 & -3.6333 & 1.05 & 22 & -3.451 & 0.0646 \\
C \(10-\) A 30 & 3.4000 & 1.05 & 22 & 3.229 & 0.1007 \\
C \(10-\) C 40 & -1.8667 & 1.05 & 22 & -1.773 & 0.7829
\end{tabular}
```


## Summary

When dealing with an incomplete design, it is often easier to treat the analysis as a one-way ANOVA and use contrasts to answer scientific questions of interest.

## Optimal yield

Now suppose you have the same data set, but your scientific question is different. Specifically, you are interested in choosing a variety-density combination that provides the optimal yield.

You can use the ANOVA analysis to choose from amongst the 3 varieties and one of the 4 densities, but there is no reason to believe that the optimal density will be one of those 4.


## Modeling

Considering a single variety, if we assume a linear relationship between Yield $\left(Y_{i}\right)$ and Density $\left(D_{i}\right)$ then the maximum Yield will occur at either $-\infty$ or $+\infty$ which is unreasonable. The easiest way to have a maximum (or minimum) is to assume a quadratic relationship, e.g.

$$
E\left[Y_{i}\right]=\mu_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} D_{i}^{2}
$$

Now we can incorporate Variety $\left(V_{i}\right)$ in many ways. Two options are parallel curves or completely independent curves.
Parallel curves:

$$
\begin{aligned}
\mu_{i}= & \beta_{0}+\beta_{1} D_{i}+\beta_{2} D_{i}^{2} \\
& +\beta_{3} \mathrm{I}\left(V_{i}=A\right)+\beta_{4} \mathrm{I}\left(V_{i}=B\right)
\end{aligned}
$$

Independent curves:

$$
\begin{aligned}
\mu_{i}= & \beta_{0}+\beta_{1} D_{i}+\beta_{2} D_{i}^{2} \\
& +\beta_{3} \mathrm{I}\left(V_{i}=A\right)+\beta_{4} \mathrm{I}\left(V_{i}=B\right) \\
& +\beta_{5} \mathrm{I}\left(V_{i}=A\right) D_{i}+\beta_{6} \mathrm{I}\left(V_{i}=B\right) D_{i} \\
& +\beta_{7} \mathrm{I}\left(V_{i}=A\right) D_{i}^{2}+\beta_{8} \mathrm{I}\left(V_{i}=B\right) D_{i}^{2}
\end{aligned}
$$



Parallel curves


Independent curves


## Finding the maximum

For a particular variety, there will be an equation like

$$
E\left[Y_{i}\right]=\mu_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} D_{i}^{2}
$$

where these $\beta_{1}$ and $\beta_{2}$ need not correspond to any particular $\beta_{1}$ and $\beta_{2}$ we have discussed thus far.

If $\beta_{2}<0$, then the quadratic curve has a maximum and it occurs at $-\beta_{1} / 2 \beta_{2}$.

## No variety

```
Call:
lm(formula = Yield ~ Density + I(Density^2), data = tomato)
Residuals:
    Min 1Q Median 3Q Max
-4.898 -2.721 -1.320 3.364 6.109
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lllll} 
(Intercept) & 5.744444 & 3.128242 & 1.836 & 0.0753 \\
Density & 0.684111 & 0.285384 & 2.397 & 0.0223 *
\end{tabular}
I(Density^2) -0.011944 0.005618 -2.126 0.0411 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.371 on 33 degrees of freedom
Multiple R-squared: 0.1854,Adjusted R-squared: 0.136
F-statistic: 3.755 on 2 and 33 DF, p-value: 0.03395
```


## Parallel curves

```
Call:
lm(formula = Yield ~ Density + I(Density^2) + Variety, data = tomato)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & \(3 Q\) & Max
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr}(>|t|
(Intercept) 9.980556 1.184193 8.428 1.61e-09 ***
Density 0.684111 0.104707 6.534 2.71e-07 ***
I(Density^2) -0.011944 0.002061 -5.794 2.21e-06 ***
VarietyA -6.791667 0.504942 -13.450 1.76e-14 ***
VarietyB -5.916667 0.504942 -11.718 6.39e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.237 on 31 degrees of freedom
Multiple R-squared: 0.897,Adjusted R-squared: 0.8837
F-statistic: 67.48 on 4 and 31 DF, p-value: 7.469e-15
```


## Independent curves



## Completely randomized design (CRD)

This semester, we have assumed a completely randomized design. As an example, consider 36 plots and we are randomly assigning our variety-density combinations to the plots such that we have 3 reps of each combination. The result may look something like this

| A20 | A10 | A20 | B10 | B10 | A30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C10 | C30 | C30 | C10 | C20 | A10 |
| B30 | B10 | B20 | B30 | B40 | B40 |
| C40 | B20 | A10 | C20 | B30 | A40 |
| C30 | B40 | A30 | C40 | B20 | C40 |
| C10 | C20 | A40 | A30 | A20 | A40 |

## Complete randomized block design (RBD)

A randomized block design is appropriate when there is a nuisance factor that you want to control for. In our example, imagine you had 12 plots at 3 different locations and you expect these locations would have impact on yield. A randomized block design might look like this.

| B10 | B40 |
| :--- | :--- |
| C30 | A30 |
| C40 | C10 |
| A20 | B20 |
| B30 | A40 |
| A10 | C20 |

Block 1

| C 20 | B 40 |
| :---: | :---: |
| C 30 | A 30 |
| C 10 | B 10 |
| A 10 | A 20 |
| B 20 | C 40 |
| B 30 | A 40 |

Block 2

| A 20 | B 30 |
| :---: | :---: |
| C 10 | A 30 |
| A 10 | C 30 |
| B 20 | C 40 |
| B 40 | A 40 |
| C 20 | B 10 |

Block 3

## RBD Analysis

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

| V+D+B |  | T+B |  | Cell-means |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Factor | df | Factor | df | Factor | df |
| Variety | 2 |  |  |  |  |
| Density | 3 | Treatment | 11 | Treatment | 11 |
| Block | 2 | Block | 2 | Block | 2 |
|  |  |  |  | Treatment $\times$ Block | 22 |
| Error | 28 | Error | 22 | Error | 0 |
| Total | 35 | Total | 35 | Total | 35 |

The cell-means model does not have enough degrees of freedom to estimate the interaction because there is no replication of the treatment within a block.

## Why block?

Consider a simple experiment with 2 blocks each with 3 experimental units and 3 treatments ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ).

| Blocked |  |
| :---: | :---: |
| A | C |
| B | B |
| A | C |
| Block 1 |  |

Unblocked

| A | C |
| :---: | :---: |
| B | B |
| C | A |

Block 1 Block 2

Let's consider 3 possible analyses:

- Blocked experiment using an additive model for treatment and block (RBD)
- Unblocked experiment using only treatment (CRD)
- Unblocked experiment using an additive model for treatment and block


## Why block?

Now suppose, the true model is

$$
\mu_{i j}=\mu+T_{i}+B_{j}
$$

where $T_{1}=T_{2}=T_{3}$ and $B_{1}=0$ and $B_{2}=\delta$.

In the Blocked experiment using an additive model for treatment and block, the expected treatment differences to all be zero.

In the Unblocked design using only treatment, the expected difference between treatments is

$$
\mu_{C}-\mu_{B}=\delta \quad \text { and } \quad \mu_{C}-\mu_{A}=\delta / 2
$$

In the Unblocked design using an additive model for treatment and block, we would have an unbalanced design and it would be impossible to compare B and C .

## Summary

Block what you can control; randomize what you cannot.


[^0]:    Assumption Violation
    Independence A pattern suggests temporal correlation

[^1]:    Assumption Violation
    Linearity A pattern suggests non-linearity

