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Model specification

This chapter is devoted to the description of specific classes of DLMs that,
alone or in combinations, are most often used to model univariate or multi-
variate time series. The additive structure of DLMs makes it easy to think
of the observed series as originating from the sum of different components,
a long term trend and a seasonal component, for example, possibly subject
to an observational error. The basic models introduced in this chapter are in
this view elementary building blocks in the hands of the modeler, who has
to combine them in an appropriate way to analyze any specific data set. The
focus of the chapter is the description of the basic models together with their
properties; estimation of unknown parameters will be treated in the following
chapter. For completeness we include in Section 3.1 a brief review of some tra-
ditional methods used for time series analysis. As we will see, those methods
can be cast in a natural way in the DLM framework.

3.1 Classical tools for time series analysis

3.1.1 Empirical methods

There are several forecasting methods that, although originally proposed as
empirical tools with no probabilistic interpretation, are quite popular and
effective. Exponentially weighted moving average (EWMA) is a traditional
method used to forecast a time series. It used to be very popular for forecast-
ing sales and inventory level. Suppose one has observations y1, . . . , yt and one
is interested in predicting yt+1. If the series is non-seasonal and shows no sys-
tematic trend, a reasonable predictor can be obtained as a linear combination
of the past observations in the following form:

ŷt+1|t = λ

t−1∑

j=0

(1 − λ)jyt−j (0 ≤ λ < 1). (3.1)
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For t large, the weights (1 − λ)jλ sum approximately to one. From an oper-
ational point of view, (3.1) implies the following updating of the forecast at
time t− 1 when the new data point yt becomes available:

ŷt+1|t = λyt + (1 − λ)ŷt|t−1,

starting from ŷ2|1 = y1. This is also known as exponential smoothing or Holt
point predictor. It can be rewritten as

ŷt+1|t = ŷt|t−1 + λ(yt − ŷt|t−1), (3.2)

enlightening its “forecast-error correction” structure: the point forecast for
yt+1 is equal to the previous forecast ŷt|t−1, corrected by the forecast error
et = (yt − ŷt|t−1) once we observe yt. Notice the similarity between (3.2) and
the state estimate updating recursion given by the Kalman filter for the local
level model (see page 38). At time t, forecasts of future observations are taken
to be equal to the forecast of yt+1; in other words, ŷt+k|t = ŷt+1|t, k = 1, 2, . . . ,
and the forecast function is constant.

Extensions of EWMA exist that allow for a linear forecast function. For
example, the popular Holt linear predictor extends the simple exponential
smoothing to nonseasonal time series that show a local linear trend, decompos-
ing yt as the sum of a local level and a local growth rate—or slope: yt = Lt+Bt.
Point forecasts are obtained by combining exponential smoothing forecasts of
the level and the growth rate:

ŷt+k|t = L̂t+1|t + B̂t+1|t k,

where

L̂t+1|t = λyt + (1 − λ)ŷt|t−1 = λyt + (1 − λ)(L̂t|t−1 + B̂t|t−1)

B̂t+1|t = γ(L̂t+1|t − L̂t|t−1) + (1 − γ)B̂t|t−1.

The above recursive formulae can be rewritten as

L̂t+1|t = ŷt|t−1 + λet, (3.3a)

B̂t+1|t = B̂t|t−1 + λγet, (3.3b)

where et = yt − ŷt|t−1 is the forecast error. Further extensions to include
a seasonal component are possible, such as the popular Holt and Winters
forecasting methods; see, e.g., Hyndman et al. (2008).

Although of some practical utility, the empirical methods described in this
subsection are not based on a probabilistic or statistical model for the observed
series, which makes it impossible to assess uncertainty (about the forecasts,
for example) using standard measures like confidence or probability intervals.
As they stand, these methods can be used as exploratory tools. In fact, they
can also be derived from an underlying DLM, which can in this case be used
to provide a theoretical justification for the method and to derive probability
intervals. For an in-depth treatment along these lines, the reader can consult
Hyndman et al. (2008). Package forecast (Hyndman; 2008) contains functions
that implement the methods described in the book.
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3.1.2 ARIMA models

Among the most widely used models for time series analysis is the class of
autoregressive moving average (ARMA) models, popularized by Box and

Jenkins (see Box et al.; 2008). For nonnegative integers p and q, a univariate
stationary ARMA(p,q) model is defined by the relation

Yt = µ+

p∑

j=1

φj(Yt−j − µ) +

q∑

j=1

ψjǫt−j + ǫt, (3.4)

where (ǫt) is Gaussian white noise with variance σ2
ǫ and the parameters

φ1, . . . , φp satisfy a stationarity condition. To simplify the notation, we as-
sume in what follows that µ = 0. When the data appear to be nonstationary,
one usually takes differences until stationarity is achieved, and then proceeds
fitting an ARMA model to the differenced data. A model for a process whose
dth difference follows an ARMA(p,q) model is called an autoregressive inte-
grated moving average process of order (p, d, q), or ARIMA(p,d,q). The orders
p, q can be chosen informally by looking at empirical autocorrelations and
partial autocorrelations, or using a more formal model selection criterion like
AIC or BIC. Univariate ARIMA models can be fit in R using the function
arima (see Venables and Ripley (2002) for details on ARMA analysis in R).

ARMA models for m-dimensional vector observations are formally defined
by the same formula (3.4), taking (ǫt) to be m-dimensional Gaussian white
noise with variance Σǫ and the parameters φ1, . . . , φp and ψ1, . . . , ψq to be
m ×m matrices satisfying appropriate stationarity restrictions. Although in
principle as simple to define as in the univariate case, multivariate ARMA
models are much harder to deal with than their univariate counterpart, in
particular for what concerns identifiability issues and fitting procedures. The
interested reader can find a thorough treatment of multivariate ARMA models
in Reinsel (1997). Functions for the analysis of multivariate ARMA models in
R can be found in the contributed package dse1 (Gilbert; 2008).

It is possible to represent an ARIMA model, univariate or multivariate, as
a DLM, as we will show in Sections 3.2.5 and 3.3.7. This may be useful for
the evaluation of the likelihood function. However, in spite of the fact that
formally an ARIMA model can be considered a DLM, the philosophy under-
lying the two classes of models is quite different: on the one hand, ARIMA
models provide a black-box approach to data analysis, offering the possibility
of forecasting future observations, but with a limited interpretability of the
fitted model; on the other hand, the DLM framework encourages the analyst
to think in terms of easily interpretable, albeit unobservable, processes—such
as trend and seasonal components—that drive the observed time series. Fore-
casting the individual underlying components of the process, in addition to
the observations, is also possible—and useful in many applications—within
the DLM framework.
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3.2 Univariate DLMs for time series analysis

As we have discussed in Chapter 2, the Kalman filter provides the formu-
lae for estimation and prediction for a completely specified DLM, that is, a
DLM where the matrices Ft, Gt and the covariance matrices Vt and Wt are
known. In practice, however, specifying a model can be a difficult task. A
general approach that works well in practice is to imagine a time series as
obtained by combining simple elementary components, each one capturing a
different feature of the series, such as trend, seasonality, and dependence on
covariates (regression). Each component is represented by an individual DLM,
and the different components are then combined in a unique DLM, producing
a model for the given time series. To be precise, the components are com-
bined in an additive fashion; series for which a multiplicative decomposition
is more appropriate can be modeled using an additive decomposition after a
log transformation. We detail below the additive decomposition technique in
the univariate case, although the same approach carries over to multivariate
time series with obvious modifications.

Consider a univariate series (Yt). One may assume that the series can be
written as the sum of independent components

Yt = Y1,t + · · · + Yh,t, (3.5)

where Yi,t might represent a trend component, Y2,t a seasonal component, and
so on. The ith component Yi,t, i = 1, . . . , h, might be described by a DLM as
follows:

Yi,t = Fi,tθi,t + vi,t, vi,t ∼ N (0, Vi,t),

θi,t = Gi,tθi,t−1 + wi,t, wi,t ∼ N (0,Wi,t),

where the pi-dimensional state vectors θi,t are distinct and the series (Yi,t, θi,t)
and (Yj,t, θj,t) are mutually independent for all i 6= j. The component DLMs
are then combined in order to obtain the DLM for (Yt). By the assumption

of independence of the components, it is easy to show that Yt =
∑h
i=1 Yi,t is

described by the DLM

Yt = Ftθt + vt, vt ∼ N (0, Vt),

θt = Gtθt−1 + wt, wt ∼ N (0,Wt),

where

θt =




θ1,t
...
θh,t



 , Ft = [F1,t| · · · |Fh,t] ,

Gt and Wt are the block diagonal matrices
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Gt =




G1,t

. . .

Gh,t



 , Wt =




W1,t

. . .

Wh,t



 ,

and Vt =
∑j
i=1 Vi,t. In this chapter, with the exception of Section 3.2.6, we

will assume that all the matrices defining a DLM are known; the analysis will
be extended to DLMs with unknown parameters in Chapters 4 and 5.

In R, dlm objects are created by the functions of the family dlmMod*, or
by the general function dlm. DLMs having a common dimension of the obser-
vation vectors can be added together to produce another DLM. For example,
dlmModPoly(2) + dlmModSeas(4) adds together a linear trend and a quar-
terly seasonal component. We start by introducing the families of DLMs that
are commonly used as basic building blocks in the representation (3.5). In
particular, Sections 3.2.1 and 3.2.2 cover trend and seasonal models, respec-
tively. These two component models can be used to carry over to the DLM
setting the classical decomposition “trend + seasonal component + noise” of
a time series.

3.2.1 Trend models

Polynomial DLMs are the models most commonly used for describing the
trend of a time series, where the trend is viewed as a smooth development of
the series over time. At time t, the expected trend of the time series can be
thought of as the expected behavior of Yt+k for k ≥ 1, given the information
up to time t; in other words, the expected trend is the forecast function ft(k) =
E(Yt+k|y1:t). A polynomial model of order n is a DLM with constant matrices
Ft = F and Gt = G, and a forecast function of the form

ft(k) = E(Yt+k|y1:t) = at,0 + at,1k + · · · + at,n−1k
n−1, k ≥ 0 , (3.6)

where at,0, . . . , at,n−1 are linear functions of mt = E(θt|y1:t) and are inde-
pendent of k. Thus, the forecast function is a polynomial of order n − 1 in
k (note that, as we will see, n is the dimension of the state vector and not
the degree of the polynomial). Roughly speaking, any reasonable shape of the
forecast function can be described or closely approximated by a polynomial,
by choosing n sufficiently large. However, one usually thinks of the trend as a
fairly smooth function of time, so that in practice small values of n are used.
The most popular polynomial models are the random walk plus noise model,
which is a polynomial model of order n = 1, and the linear growth model,
that is a polynomial model of order n = 2.

The local level model

The random walk plus noise, or local level model, is defined by the two equa-
tions (2.5) of the previous chapter. As noted there, the behavior of the process
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(Yt) is greatly influenced by the signal-to-noise ratio r = W/V , the ratio be-
tween the two error variances. Figure 3.1 shows some simulated trajectories
of (Yt) and (µt) for different values of the ratio r (see Problem 3.1).
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Fig. 3.1. Trajectories of the random walk plus noise, for different values of the
signal-to-noise ratio. The trajectory of the state µt is shown in gray and is the same
in the four plots

The k-steps-ahead predictive distribution for this simple model is

Yt+k|y1:t ∼ N(mt, Qt(k)) , k ≥ 1 , (3.7)

where Qt(k) = Ct+
∑k
j=1Wt+j+Vt+k = Ct+kW+V . We see that the forecast

function ft(k) = E(Yt,k|y1:t) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct + kW +V ,
and we clearly see that it increases as the time horizon t+k gets further away.

The controllability and observability matrices of the model are

C =
[
W 1/2

]
,

O = F = [1],

which are trivially of full rank, as long as W > 0. It follows from the results
of Section 2.11 that the Kalman filter for this model is asymptotically stable,
with Rt, Ct, and the gain matrix Kt converging to limiting values R,C, and
K, respectively. It can be shown (see West and Harrison; 1997, Theorem 2.3)
that
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K =
r

2

(√
1 +

4

r
− 1

)
. (3.8)

It follows that C = KV . This gives an upper bound to the precision attainable
in estimating the current value of µt. Furthermore, we obtain a limit form of
the one-step-ahead forecasts. From (3.7),

ft+1 = E(Yt+1|y1:t) = mt = mt−1 +Kt(Yt −mt−1) = mt−1 +Ktet .

For large t, Kt ≈ K so that, asymptotically, the one-step-ahead forecast is
given by

ft+1 = mt−1 +Ket. (3.9)

A forecast function of the kind (3.9) is used in many popular models for time
series. It corresponds to Holt point predictor, see equation (3.2).

In can be shown that Holt point predictor is optimal if (Yt) is an
ARIMA(0, 1, 1) process. In fact, the steady model has connections with the
popular ARIMA(0,1,1) model. It can be shown (Problem 3.3) that, if Yt is a
random walk plus noise, then the first differences Zt = Yt−Yt−1 are stationary,
and have the same autocorrelation function as an MA(1) model. Furthermore,
being et = Yt −mt−1 and mt = mt−1 +Ktet, we have

Yt − Yt−1 = et +mt−1 − et−1 −mt−2

= et +mt−1 − et−1 −mt−1 +Kt−1et−1

= et − (1 +Kt−1)et−1 .

If t is large, so that Kt−1 ≈ K,

Yt − Yt−1 ≈ et − (1 −K)et−1.

Since the forecast errors are a white noise sequence (see Chapter 2, page 73),
(Yt) is asymptotically an ARIMA(0,1,1) process.

Example — Annual precipitation at Lake Superior

Figure 3.2 shows annual precipitation in inches at Lake Superior, from 1900
to 19861. The series shows random fluctuations about a changing level over
time, with no remarkable trend behavior; thus, a random walk plus noise
model could be tentatively entertained. We suppose here that the evolution
variance W and the observational variance V are known, and we assume that
W is much smaller (0.121) than V (9.465) (so r = 0.0128). In R a local
level model can be set up using the function dlmModPoly with first argument
order=1.

Figure 3.3(a) shows the filtering estimates mt of the underlying level of the
series and Figure 3.3(b) shows the square root of the variances Ct. Recall that

1 Source: Hyndman (n.d.).
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Fig. 3.2. Annual precipitation at Lake Superior

for the local level model Ct has a limiting value as t approaches infinity. The
smoothed states st and square root of the variances St are plotted in Figures
3.3(c) and 3.3(d). The U -shaped behavior of the sequence of variances St
reflects the intuitive fact that the states around the middle of the time interval
spanned by the data are those that can be estimated more accurately.
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Fig. 3.3. (a): Filtered state estimates mt with 90% confidence intervals; (b): Square
root of filtering variances Ct; (c): Smoothed state estimates st with 90% confidence
intervals; (d): Square root of smoothing variances St
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The one-step-ahead forecasts, for the local level model, are ft = mt−1.
The standardized one-step-ahead forecast errors, or standardized innovations,
can be computed in R with a call to the residuals function, which has a
method for dlmFiltered objects. The residuals can be inspected graphically
(Figure 3.4(a)) to check for unusually large values or unexpected patterns—
recall that the standardized innovation process has the distribution of a Gaus-
sian white noise. Two additional very useful graphical tools to detect depar-
tures from the model assumptions are the plot of the empirical autocorrela-
tion function (ACF) of the standardized innovations (Figure 3.4(b)) and their
normal QQ-plot (Figure 3.4(c)). These can be drawn using the standard R
functions acf and qqnorm. By looking at the plots, there does not seem to be
any meaningful departure from the model assumptions.
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Fig. 3.4. (a): Standardized one-step-ahead forecast errors; (b): ACF of one-step-
ahead forecast errors (c): Normal probability plot of standardized one-step-ahead
forecast errors

Formal statistical tests may also be employed to assess model assumptions
via the implied properties of the innovations. For example, the Shapiro–Wilk
test can be used to test the standardized innovations for normality. It is avail-
able in R as shapiro.test. For the standardized innovations from the Lake
Superior precipitation data, the p-value is 0.403, so the null hypothesis of nor-
mally distributed standardized innovations cannot be rejected. The Shapiro–
Wilk normality test is commonly preferred to the Kolmogorov–Smirnov test,
which is also available in R as ks.test, as being more powerful against a
broad range of alternatives. R functions that perform other normality tests are
available in contributed packages fBasics (Wuertz; 2008) and nortest (Gross;
n.d.). For a thorough treatment of normality tests the reader is referred to
D’Agostino and Stephens (1986). To test for lack of serial correlation one can
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use the Ljung and Box test (Ljung and Box; 1978), which is based on the first
k sample autocorrelations, for a prespecified value of k. The test statistic is

Q(k) = n(n+ 2)

k∑

j=1

ρ̂2(j)/(n− j),

where n is the sample size and ρ̂(j) is the sample autocorrelation at lag j,
defined by

ρ̂(j) =

n−j∑

t=1

(ẽt − ¯̃e)(ẽt+j − ¯̃e)
/ n∑

t=1

(ẽt − ¯̃e)2, j = 1, 2, . . . .

What the Ljung–Box test effectively does is test for the absence of serial
correlation up to lag k. Using k = 20, the p-value of the Ljung–Box test
for the standardized innovations of the example is 0.813, confirming that the
standardized innovations are uncorrelated. It is also common to compute the
p-value of the Ljung–Box test for all the values of k up to a maximum, say
10 or 20. The function tsdiag, among other things, does this calculation
and plots the resulting p-values versus k for the residuals of a fitted ARMA
model. Of course, in this case the calculated p-values should only be taken
as an indication since, in addition to the asymptotic approximation of the
distribution of the test statistic for any fixed k, the issue of multiple testing
would have to be addressed if one wanted to draw a conclusion in a formal way.
The display below illlustrates how to obtain in R the standardized innovations
and perform the Shapiro–Wilk and Ljung–Box tests.

R code

> loc <- "http://www.robjhyndman.com/TSDL/roberts/plsuper.dat"

2 > lakeSup <- ts(read.table(loc, skip = 3,

+ colClasses = "numeric"),

4 + start = 1900)

> modLSup <- dlmModPoly(1, dV = 9.465, dW = 0.121)

6 > lSupFilt <- dlmFilter(lakeSup, modLSup)

> res <- residuals(lSupFilt, sd = FALSE)

8 > shapiro.test(res)

10 Shapiro-Wilk normality test

12 data: res

W = 0.9848, p-value = 0.4033

14

> Box.test(res, lag = 20, type = "Ljung")

16

Box-Ljung test

18
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data: res

20 X-squared = 14.3379, df = 20, p-value = 0.813

22 > sapply(1 : 20, function(i)

+ Box.test(res, lag = i, type = "Ljung-Box")$p.value)

24 [1] 0.1552078 0.3565713 0.2980295 0.4508888 0.5829209 0.6718375

[7] 0.7590090 0.8148123 0.8682010 0.8838797 0.9215812 0.9367660

26 [13] 0.9143456 0.9185912 0.8924318 0.7983241 0.7855680 0.7971489

[19] 0.8010898 0.8129607

Exponential smoothing one-step-ahead forecasts can be obtained using the
function HoltWinters. The results for the annual precipitations in Lake Su-
perior are plotted in Figure 3.2.1 (here the smoothing parameter is estimated
as λ = 0.09721). We see that the steady model has, for large t, essentially the
same forecast function as the simple exponential smoothing.
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Fig. 3.5. One-step ahead forecasts

R code

> HWout <- HoltWinters(lakeSup, gamma = 0, beta = 0)

2 > plot(dropFirst(lSupFilt$f), lty = "dashed",

+ xlab = "", ylab = "")

4 > lines(HWout$fitted[, "level"])

> leg <- c("Holt-Winters", "Local level DLM")

6 > legend("topleft", legend = leg, bty = "n",

+ lty = c("solid", "dashed"))
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Linear growth model

The linear growth, or local linear trend model, is defined by (2.6). The state
vector is θt = (µt, βt)

′, where µt is usually interpreted as the local level and βt
as the local growth rate. The model assumes that the current level µt changes
linearly through time and that the growth rate may also evolve. It is thus
more flexible than a global linear trend model. A good exercise, also for this
model, is to simulate trajectories of (Yt, t = 1, . . . , T ), for different values of
V and W (see Problem 3.1).

Denoting mt−1 = (µ̂t−1, β̂t−1)
′, the one-step-ahead point forecasts and the

filtering state estimates are given by

at = Gmt−1 =

[
µ̂t−1 + β̂t−1

β̂t−1

]
(3.10a)

ft = Ft at = µ̂t−1 + β̂t−1, (3.10b)

mt =

[
µ̂t
β̂t

]
= at +Ktet =

[
µ̂t−1 + β̂t−1 + kt1et

β̂t−1 + kt2et

]
. (3.10c)

The forecast function is
ft(k) = µ̂t + kβ̂t,

(see Problem 3.6) which is a linear function of k, so the linear growth model
is a polynomial DLM of order 2.

The controllability matrix of the linear growth model is

C =

[
σµ σβ σµ 0
0 σβ 0 σβ

]
.

The rank of C is two if and only if σβ > 0, in which case the model is control-
lable. The model is always observable, since the observability matrix is always
full-rank:

O =

[
1 0
1 1

]
.

Therefore, assuming that σβ > 0, there are limiting values for Rt, Ct, and
Kt. In particular, the Kalman gain Kt converges to a constant matrix K =
[k1 k2] (see West and Harrison; 1997, Theorem 7.2). Therefore, the asymptotic
updating formulae for the estimated state vector are given by

µ̂t = µ̂t−1 + β̂t−1 + k1 et (3.11)

β̂t = β̂t−1 + k2 et.

Several popular point predictors’ methods use expressions of the form (3.11),
such as the Holt linear predictor (compare with (3.3)) and the Box and Jenk-
ins’ ARIMA(0,2,2) predictor (see West and Harrison; 1997, p. 221 for a dis-
cussion). In fact, the linear growth model is related to the ARIMA(0,2,2)
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process. It can be shown (Problem 3.5) that the second differences of (Yt) are
stationary and have the same autocorrelation function as an MA(2) model.
Furthermore, we can write the second differences zt = Yt − 2Yt−1 + Yt−2 as

zt = et + (−2 + k1,t−1 + k2,t−1)et−1 + (1 − k1,t−2)et−2 (3.12)

(see Problem 3.7). For large t, k1,t ≈ k1 and k2,t ≈ k2, so that the above
expression reduces to

Yt − 2Yt−1 + Yt−2 ≈ et + ψ1et−1 + ψ2et−2

where ψ1 = −2 + k1 + k2 and ψ2 = 1 − k1, which is a MA(2) model. Thus,
asymptotically, the series (Yt) is an ARIMA(0,2,2) process.

Example — Spain annual investment

Consider Spain annual investments from 1960 to 20002, plotted in Figure 3.6.
The time series shows a roughly linear increase, or decrease, in the level,
with a slope changing every few years. In the near future it would not be
unreasonable to predict the level of the series by linear extrapolation, i.e.,
using a linear forecast function. A linear growth model could be therefore
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Fig. 3.6. Spain investments

appropriate for these data. We assume that the variances are known (they
were actually estimated) and are as follows:

2 Source: http://www.fgn.unisg.ch/eumacro/macrodata.
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W = diag(102236, 321803), V = 10.

The function dlmModPoly with argument order=2 (which is the default) can
be used to set up the model in R, see display below. Visual inspection of a QQ-
plot and ACF of the standardized innovations (not shown) do not raise any
specific concern about the appropriateness of the model. An alternative model
(an integrated random walk model, in fact, see page 100) that describes the
data almost equally well, with one less parameter, is the linear growth model
with the same V and

W = diag(0, 515939).

R code

> mod1 <- dlmModPoly(dV = 10, dW = c(102236, 321803))

2 > mod1Filt <- dlmFilter(invSpain, mod1)

> fut1 <- dlmForecast(mod1Filt, n = 5)

4 > mod2 <- dlmModPoly(dV = 10, dW = c(0, 515939))

> mod2Filt <- dlmFilter(invSpain, mod2)

6 > fut2 <- dlmForecast(mod2Filt, n = 5)

Figure 3.6 shows, together with the data, one-step-ahead forecasts and five
years forecasts for the two models under consideration. It is clear that the
forecasts, both in sample and out of sample, produced by the two models
are very close. The standard deviations of the one-step-ahead forecasts, which
can be obtained as residuals(mod1Filt)$sd, are also fairly close, 711 for the
first model versus 718 for the second at time t = 41 (year 2000). The reader
can verify that the difference in the forecast variances (fut1$Q and fut2$Q)
grows with the number of steps ahead to be predicted. Several measures of
forecasting accuracy can be used to compare the two models more formally.
Commonly used criteria are the mean absolute deviation (MAD), the mean
square error (MSE), and the mean absolute percentage error (MAPE), defined
respectively by the following formulae:

MAD =
1

n

n∑

t=1

|et|,

MSE =
1

n

n∑

t=1

e2t ,

MAPE =
1

n

n∑

t=1

|et|
yt
.

For the two models under consideration and the Spain investment data, none
of the two stands out as a clear winner, as the following display shows.

R code

> mean(abs(mod1Filt$f - invSpain))

2 [1] 623.5682
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> mean(abs(mod2Filt$f - invSpain))

4 [1] 610.2621

> mean((mod1Filt$f - invSpain)^2)

6 [1] 655480.6

> mean((mod2Filt$f - invSpain)^2)

8 [1] 665296.7

> mean(abs(mod1Filt$f - invSpain) / invSpain)

10 [1] 0.08894788

> mean(abs(mod2Filt$f - invSpain) / invSpain)

12 [1] 0.08810524

An additional statistic that can be used to assess the forecasting performance
of a specific model is Theil’s U (Theil; 1966). This compares the MSE of the
model with the MSE of the trivial “no-change” model that predicts the next
observation to be the same as the current one. Formally, the definition is the
following:

U =

√ ∑n
t=2(yt − ft)2∑n
t=2(yt − yt−1)2

.

A value of U less than one means that the entertained model produces better
forecasts, on average, than the no-change model. For the Spain investment
data the results are reported below.

R code

> sqrt(sum((mod1Filt$f - invSpain)[-(1:5)]^2) /

2 + sum(diff(invSpain[-(1:4)])^2))

[1] 0.9245

4 > sqrt(sum((mod2Filt$f - invSpain)[-(1:5)]^2) /

+ sum(diff(invSpain[-(1:4)])^2))

6 [1] 0.9346

We left out the first five observations to give the Kalman filter the time to
adapt to the data—remember that the prior variance C0 is very large. In this
example, both models perform better than the no-change model, with about
a 7% reduction in the square root of the MSE.

nth order polynomial model

The local level and the linear growth models are special cases of the nth
order polynomial model. The general nth order polynomial model has an n-
dimensional state space and is described by the matrices
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F = (1, 0, . . . , 0) (3.13a)

G =





1 1 0 . . . 0
0 1 1 0 . . . 0
...

. . .
...

0 . . . 0 1 1
0 . . . 0 1




(3.13b)

W = diag(W1, . . . ,Wn). (3.13c)

In terms of its components, the model can be written in the form






Yt = θt,1 + vt

θt,j = θt−1,j + θt−1,j+1 + wt,j j = 1, . . . , n− 1

θt,n = θt−1,n + wt,n.

(3.14)

So, for j = 2, . . . , n, the jth component of the state vector at any time t
represents, up to a random error, the increment of the (j − 1)st component
during the next time interval, while the first component represents the mean
response, or the level of the series. The forecast function, ft(k), is a polynomial
of degree n− 1 in k (Problem 3.6).

The special case that is obtained by setting W1 = · · · = Wn−1 = 0 is
called integrated random walk model. The mean response function satisfies
for this model the relation ∆nµt = ǫt for some white noise sequence (ǫt).
The form of the forecast function is again polynomial. With respect to the
nth order polynomial model, the integrated random walk model has n − 1
fewer parameters, which may improve the precision attainable in estimating
unknown parameters. On the other hand, having only one degree of freedom
in the system noise, it may be slower in adapting to random shocks to the
state vector, which may reflect in a lower accuracy in the forecasts.

3.2.2 Seasonal factor models

In this section and the next we present two ways of modeling a time series
that shows a cyclical behavior, or “seasonality”: the seasonal factor model,
covered below, and the Fourier-form seasonal model, treated in the following
section.

Suppose that we have quarterly data (Yt, t = 1, 2, . . .), for examples on the
sales of a store, which show an annual cyclic behavior. Assume for simplicity
that the series has zero mean: a non-zero mean, or a trend component, can
be modeled separately, so for the moment we consider the series as purely
seasonal. We might describe the series by introducing seasonal deviations from
the mean, expressed by different coefficients αi for the different quarters,
i = 1, . . . , 4. So, if Yt−1 refers to the first quarter of the year and Yt to the
second quarter, we assume



3.2 Univariate DLMs for time series analysis 101

Yt−1 = α1 + vt−1 (3.15)

Yt = α2 + vt

and so on. This model can be written as a DLM as follows. Let θt−1 =
(α1, α4, α3, α2)

′ and Ft = F = (1, 0, 0, 0). Then the observation equation
of the DLM is given by

Yt−1 = Fθt−1 + vt−1,

which corresponds to (3.15). The state equation must “rotate” the components
of θt−1 into the vector θt = (α2, α1, α4, α3)

′, so that Yt = Fθt + vt = α2 + vt.
The required permutation of the state vector can be obtained by a permuta-
tion matrix G so defined:

G =





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 .

Then the state equation can be written as

θt = Gθt−1 + wt = (α2, α1, α4, α3)
′ + wt.

In the static seasonal model, wt is degenerate on a vector of zeros (i.e.,Wt = 0)
More generally, the seasonal effects might change in time, so thatWt is nonzero
and has to be carefully specified.

In general, a seasonal time series with period s can be modeled through
an s-dimensional state vector θt of seasonal deviations, by specifying a DLM
with F = (1, 0, . . . , 0) and G given by a s by s permutation matrix. Iden-
tifiability constraints have to be imposed on the seasonal factors α1, . . . , αs.
A common choice is to impose that they sum to zero,

∑s
j=1 αj = 0. The

linear constraint on the s seasonal factors implies that there are effectively
only s− 1 free seasonal factors, and this suggests an alternative, more parsi-
monious representation that uses an (s − 1)-dimensional state vector. In the
previous example of quarterly data, one can consider θt−1 = (α1, α4, α3)

′ and
θt = (α2, α1, α4)

′, with F = (1, 0, 0). To go from θt−1 to θt, assuming for the
moment a static model without system evolution errors and using the con-
straint

∑4
i=1 αi = 0, one has to apply the linear transformation given by the

matrix

G =




−1 −1 −1
1 0 0
0 1 0



 .

In general, for a seasonal model with period s, one can consider an (s−1)-
dimensional state space, with F = (1, 0, . . . , 0) and
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G =





−1 −1 . . . −1 −1
1 0 0 0
0 1 0 0

. . .

0 0 1 0




.

A dynamic variation in the seasonal components may be introduced via a
system evolution error with variance W = diag(σ2

w, 0, . . . , 0).
A seasonal factor DLM can be specified in R using the function dlmModSeas.

For example, a seasonal factor model for quarterly data, with σ2
w = 4.2 and

observation variance V = 3.5 can be specified as follows.

R code

mod <- dlmModSeas(frequency = 4, dV = 3.5, dW = c(4.2, 0, 0))

3.2.3 Fourier form seasonal models

Any discrete-time periodic function having period s is characterized by the
values it takes at time t = 1, 2, . . . , s: if gt is such a function, with gt = αt,
t = 1, . . . , s, then after time s the values of gt simply repeat themselves, and
we have gs+1 = α1, gs+2 = α2 and so forth. Therefore, we can associate the
periodic function gt to the s-dimensional vector α = (α1, . . . , αs)

′. We can
think of α as a linear combination of basis vectors:

α =

s∑

j=1

αjuj ,

where uj is the s-dimensional vector having jth component equal one and
all the remaining components equal zero. The set {u1, . . . , us} is customarily
referred to as the canonical basis of R

s; clearly, any vector in R
s has a unique

representation as a linear combination of basis vectors. For our purposes,
however, this representation is not very useful, since it does not allow us
to distinguish between smooth, less smooth, and not-so-smooth functions.
Fortunately, there is an alternative basis of R

s that allows this finer distinction
to be made. To begin with, suppose that s is even. In practice, this is the most
commonly encountered case—think of quarterly or montly data. Define the
Fourier frequencies

ωj =
2πj

s
, j = 0, 1, . . . ,

s

2

and consider the following s dimensional vectors:
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e0 = (1, 1, . . . , 1)′

c1 = (cosω1, cos 2ω1, . . . , cos sω1)
′

s1 = (sinω1, sin 2ω1, . . . , sin sω1)
′

...

cj = (cosωj , cos 2ωj , . . . , cos sωj)
′

sj = (sinωj , sin 2ωj , . . . , sin sωj)
′

...

cs/2 = (cosωs/2, cos 2ωs/2, . . . , cos sωs/2)
′.

(3.16)

Note that cs/2 = (−1, 1,−1, . . . ,−1, 1)′ and we do not consider ss/2 since
this would be a vector of zeros. The number of vectors defined in (3.16) is
1 + 2( s2 − 1) + 1 = s and, by using standard trigonometric identities, one can
show that these vectors are orthogonal. In turn, this implies that every vector
in R

s has a unique representation as a linear combination of e0, . . . , cs/2, which
we will write as

α = a0e0 +

s/2−1∑

j=1

(
ajcj + bjsj

)
+ as/2cs/2. (3.17)

There are two distinct advantages in using this basis of R
s over the canonical

one. The first is that the extension of the basis vectors to periodic functions
can be obtained naturally in terms of the trigonometric functions involved in
their definition. Consider for example sj : for any 1 ≤ t ≤ s, its tth component
is sj(t) = sin(2πtj/s). To extend sj to a periodic function we must define
sj(t+ ks) = sj(t). But, since

sin
2π(t+ ks)j

s
= sin

(
2πtj

s
+ 2πkj

)
= sin

2πtj

s
,

the extension of sj(t) to any integer t is achieved simply by plugging the ar-
gument t into the trigonometric expression defining sj . The second and more
substantial advantage of using this new basis composed by trigonometric func-
tions is that the basis vectors now go from smoothest to roughest: at the two
extremes we have the constant vector e0, which corresponds to a constant
periodic function, and the maximally oscillating cs/2, which corresponds to a
periodic function bouncing back and forth between -1 and 1. To understand
what happens in between these two extremes, let us focus on the cj ’s; similar
considerations can be made regarding the sj ’s. For a fixed j, as t goes from
1 to s, 2πtj/s increases monotonically from 2πj/s to 2πj. Furthermore, the
trigonometric functions sine and cosine are periodic, with period 2π. So, con-
sidering j = 1, the values 2πt/s, t = 1, . . . , s, consist of s equally spaced points
in the interval (0, 2π]. For j = 2, 2πtj/s runs up to 4π, spanning two times the
basic period 2π of the cosine function and therefore being twice as wiggling.
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In general, for any j, the argument 2πtj/s spans the interval (0, 2πj] and the
corresponding cosine function cj goes through a complete period exactly j
times as t goes from 1 to s. Therefore, a higher value of j corresponds to a
rougher cj , in the sense that the function displays more frequent oscillations.
To illustrate this feature for s = 12, Figure 3.7 shows, from top to bottom,
the graphs of c1, s1, . . . , c5, s5, c6.

It is convenient to group together in the representation (3.17) the terms
involving cj and sj , which are functions oscillating with the same frequency.
For j = 1, . . . , s/2, define the jth harmonic of gt by

Sj(t) = aj cos(tωj) + bj sin(tωj), (3.18)

where we take bs/2 = 0. Moreover, we will assume that a0 = 0, since in the
DLM framework—as in the classical time series decomposition—the mean
is typically modelled separately from the seasonal component. Note that, in
view of the orthogonality of the basis vectors, the sum of any harmonic over
an entire period is zero. With these assumptions, we can write

gt =

s/2∑

j=1

Sj(t). (3.19)

The last step, in order to use in the context of DLMs the representation
of seasonality in terms of harmonics discussed above, is to study, for a fixed
j, the temporal dynamics of Sj(t). The evolution of Sj from time t to time
t+ 1 is given by

Sj(t) 7−→ Sj(t+ 1) = aj cos
(
(t+ 1)ωj

)
+ bj sin

(
(t+ 1)ωj

)
.

If j < s/2, it is easy to realize that, from the knowledge of Sj(t) alone, i.e.,
without knowing aj and bj individually, it is impossible to determine the value
of Sj(t + 1). However, if in addition to Sj(t) one also knows the conjugate
harmonic

S∗
j (t) = −aj sin(tωj) + bj cos(tωj),

then one can explicitely compute Sj(t+ 1) and also S∗
j (t+ 1). In fact,

Sj(t+ 1) = aj cos
(
(t+ 1)ωj

)
+ bj sin

(
(t+ 1)ωj

)

= aj cos(tωj + ωj) + bj sin(tωj + ωj)

= aj
(
cos(tωj) cosωj − sin(tωj) sinωj

)

+ bj
(
sin(tωj) cosωj + cos(tωj) sinωj

)

=
(
aj cos(tωj) + bj sin(tωj)

)
cosωj

+
(
− aj sin(tωj) + bj cos(tωj)

)
sinωj

= Sj(t) cosωj + S∗
j (t) sinωj

(3.20a)

and
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S∗
j (t+ 1) = −aj sin

(
(t+ 1)ωj

)
+ bj cos

(
(t+ 1)ωj

)

= −aj
(
sin(tωj) cosωj + cos(tωj) sinωj

)

+ bj
(
cos(tωj) cosωj − sin(tωj) sinωj

)

=
(
− aj sin(tωj) + bj cos(tωj)

)
cosωj

−
(
aj cos(tωj) + bj sin(tωj)

)
sinωj

= −Sj(t) sinωj + S∗
j (t) cosωj .

(3.20b)

The two equations (3.20) can be combined in the matrix equation

[
Sj(t+ 1)
S∗
j (t+ 1)

]
=

[
cosωj sinωj
− sinωj cosωj

] [
Sj(t)
S∗
j (t)

]
.

In this form, the jth harmonic fits naturally in the DLM framework by
considering the bivariate state vector

(
Sj(t), S

∗
j (t)

)′
with evolution matrix

Hj =

[
cosωj sinωj
− sinωj cosωj

]

and observation matrix F = [1 0]. The case j = s/2 is even simpler, since

Ss/2(t+ 1) = cos
(
(t+ 1)π

)
= − cos(tπ) = −Ss/2(t).

That is, Ss/2 simply changes sign at every unit time increment. As a DLM,
we can consider this to correspond to a univariate state vector with evolution
matrix Hs/2 = [−1] and observation matrix F = [1].

The DLM representations of the different harmonics can be combined to
obtain back (3.19). To this aim, we can consider the state vector

θt =
(
S1(t), S

∗
1 (t), . . . , S s

2−1(t), S
∗
s
2−1(t), S s

2
(t)
)′
, t = 0, 1, . . . ,

together with the evolution matrix

G = blockdiag(H1, . . . ,H s
2
)

and observation matrix
F = [1 0 1 0 . . . 0 1].

Setting to zero all the evolution and observation variances, the above defini-
tions give a DLM representation of a periodic seasonal component. Non-zero
evolution variances may be included to account for a stochastically evolving
seasonal component. In this case, strictly speaking, the seasonal component
will no longer be periodic. However, the forecast function will, see Problem 3.9.
In any case,

θ0 =
(
a1, b1, . . . , a s

2−1, b s
2−1, a s

2

)′
.

By appropriately selecting θ0, the representation above can give just any zero-
mean periodic function of period s. In most applications, however, we want to



3.2 Univariate DLMs for time series analysis 107

−
1
0

0
5

S
_
1

−
1
.0

0
.5

S
_
2

−
0
.3

0
.0

0
.3

S
_
3

−
0
.3

0
.0

0
.3

S
_
4

−
0
.1

5
0
.0

0
0
.1

5

S
_
5

−
0
.2

0
.0

0
.2

2 4 6 8 10 12

S
_
6

Fig. 3.8. Harmonics of average monthly temperature at Nottingham

model a fairly smooth seasonal component. This can be achieved by discarding
a number of high-frequency harmonics and retaining only a few of the first
harmonics, which are those that oscillate more slowly (cf. Figure 3.7). In
this way we have a parsimonious representation of a periodic component, not
available when using the seasonal factors of Section 3.2.2.

To create in R the representation of a Fourier-form seasonal DLM, we can
use the function dlmModTrig, specifying the period via the argument s. In
addition, we may specify the number of harmonics to retain in the DLM via
the argument q. To illustrate how the Fourier form of a seasonal component
can be used to obtain a more parsimonius model, consider the data set of
average monthly temperatures at Nottingham, nottem. As a first model, we
use a full 12-month static seasonal component added to a local level. The non-
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zero variances were estimated by maximum likelihood. Figure 3.8 shows the
six harmonics of the seasonal component over a complete 12-month period.

R code

> mod1 <- dlmModTrig(s = 12, dV = 5.1118, dW = 0) +

2 + dlmModPoly(1, dV = 0, dW = 81307e-3)

> smoothTem1 <- dlmSmooth(nottem, mod1)

4 > plot(ts(smoothTem1$s[2 : 13, c(1, 3, 5, 7, 9, 11)],

+ names = paste("S", 1 : 6, sep = "_")),

6 + oma.multi = c(2, 0, 1, 0), pch = 16, nc = 1,

+ yax.flip = TRUE, type = ’o’, xlab = "", main = "")

From the plot we can see that the harmonics after the second have a relatively
small amplitude. In view of this, we can try a model containing only the first
two harmonics, in addition to the local level representing the process mean.
As the code below shows, the MAPE of this reduced model is slightly lower
than that of the full model: dropping seven components from the state vector
did not affect much the prediction capability of the model—in fact it helped
improving it.

R code

> mod2 <- dlmModTrig(s = 12, q = 2, dV = 5.1420, dW = 0) +

2 + dlmModPoly(1, dV = 0, dW = 81942e-3)

> mean(abs(residuals(dlmFilter(nottem, mod1),

4 + type = "raw", sd = FALSE)) / nottem)

[1] 0.08586188

6 > mean(abs(residuals(dlmFilter(nottem, mod2),

+ type = "raw", sd = FALSE)) / nottem)

8 [1] 0.05789139

An explanation for the lower MAPE of the reduced model is that the higher-
order harmonics are basically used to fit the noise in the data, and this fitted
noise does not generalize well when it comes to making out-of-sample predic-
tions, in particular one-step-ahead predictions.

So far in our discussion of periodic functions we have considered an even
period. The case of an odd period can be treated in essentially the same way.
The only difference is in the last harmonic which, instead of being a cosine
function only, also has a sine component and has therefore the same form as
the previous ones. More specifically, a zero-mean periodic function having odd
period s has the representation

α(t) =

(s−1)/2∑

j=1

Sj(t),
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where the Sj are defined by (3.18). Each harmonic, including the last, has
two degrees of freedom, expressed by the coefficients aj and bj . The DLM
representation parallels the one outlined above in the even-period case, with
the difference that the last diagonal block of the evolution matrix G is the
2 × 2 matrix

H s−1
2

=

[
cosω s−1

2
sinω s−1

2

− sinω s−1
2

cosω s−1
2

]

and the observation matrix is

F = [1 0 1 0 . . . 0 1 0].

3.2.4 General periodic components

The treatment of seasonal components given in the previous section is per-
fectly appropriate when the period of the process underlying the observations
is a multiple of the time between consecutive observations. However, for many
natural phenomena this is not the case. Consider, for example, the data set
of monthly sunspots available in R as sunspots. A plot of the data reveals
very clearly some kind of periodicity of about eleven years, but it would be
naif to think that the period consists of an integer number of months. After
all, a month is a totally arbitrary time scale to measure something happening
on the Sun. In cases like this, it is useful to think of an underlying periodic
countinuous-time process, g(t), observed at discrete time intervals. A periodic
function defined on the real line can be expressed as a sum of harmonics simi-
lar to (3.17) or (3.19). In fact, it can be proved that for a continuous periodic
function g(t) one has the representation

g(t) = a0 +

∞∑

j=1

(
aj cos(tωj) + bj sin(tωj)

)
, (3.21)

where ωj = jω and ω is the so-called fundamental frequency. The fundamental
frequency is related to τ , the period of g(t), by the relationship τω = 2π. In
fact, it is easy to see that, if t2 = t1 + kτ for some integer k, then

t2ωj = t2jω = (t1 + kτ)jω = t1jω + kjτω = t1ωj + kj · 2π

and, therefore, g(t2) = g(t1). Assuming, as we did in Section 3.2.3, that a0 = 0,
that is, that g(t) has mean zero, and defining the jth harmonic of g(t) to be

Sj(t) = aj cos(tωj) + bj sin(tωj),

we can rewrite (3.21) as

g(t) =

∞∑

j=1

Sj(t). (3.22)
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The discrete-time evolution of the jth harmonic from time t to time t + 1
can be cast as a DLM in the same way as we did in Section 3.2.3. We just
have to consider the bivariate state vector

(
Sj(t), S

∗
j (t)

)′
, where S∗

j (t) is the
conjugate harmonic defined by

S∗
j (t) = −aj sin(tωj) + bj cos(tωj),

and the evolution matrix

Hj =

[
cosωj sinωj
− sinωj cosωj

]
.

Then we have [
Sj(t+ 1)
S∗
j (t+ 1)

]
= Hj

[
Sj(t)
S∗
j (t)

]
.

A nonzero evolution error may be added to this evolution equation to account
for a stochastically varying harmonic.

Clearly, in a DLM we cannot keep track of the infinitely many harmonics
in the representation (3.22): we have to truncate the infinite series on the RHS
to a finite sum of, say, q terms. As already seen in the previous section, the
higher-order harmonics are those oscillating more rapidly. Thus, the decision
of truncating the infinite sum in (3.22) can be interpreted as a subjective
judgement about the degree of smoothness of the function g(t). In practice it
is not uncommon to model the periodic function g(t) using only one or two
harmonics.

introduced in Section 3.2.3 may be used. The user needs to specify the period
via the argument tau and the number of harmonics, q. Alternatively, the fun-
damental frequency ω can be specified, via the argument om, instead of the
period τ . The display below shows how to specify a two-harmonic stochas-
tic periodic component added to a local level for the sunspots data, on the
square root scale. The period τ = 130.51 as well as the nonzero variances were
estimated by maximum likelihood.

R code

> mod <- dlmModTrig(q = 2, tau = 130.51, dV = 0,

2 + dW = rep(c(1765e-2, 3102e-4), each = 2)) +

+ dlmModPoly(1, dV = 0.7452, dW = 0.1606)

The model can be used, for example, to smooth the data, extracting the
level (the “signal”) from the data. Figure 3.9, obtained with the code below,
shows the data, the level, and the general stochastic periodic component.
The level is the last (fifth) component of the state vector, while the periodic
component is obtained by adding the two harmonics of the model (first and
third components).

To set up in R a general periodic DLM component, the function dlmModTrig
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Fig. 3.9. Monthly sunspot numbers

R code

> sspots <- sqrt(sunspots)

2 > sspots.smooth <- dlmSmooth(sspots, mod)

> y <- cbind(sspots,

4 + tcrossprod(dropFirst(sspots.smooth$s[, c(1, 3, 5)]),

+ matrix(c(0, 0, 1, 1, 1, 0), nr = 2,

6 + byrow = TRUE)))

> colnames(y) <- c("Sunspots", "Level", "Periodic")

8 > plot(y, yax.flip = TRUE, oma.multi = c(2, 0, 1, 0))
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3.2.5 DLM representation of ARIMA models

Any ARIMA model can be expressed as a DLM. More precisely, for any
ARIMA process, it is possible to find a DLM whose measurement process
(Yt) has the same distribution as the given ARIMA. The state space with its
dynamics is not uniquely determined: several representations have been pro-
posed in the literature and are in use. Here we will present only one of them,
which is probably the most widely used. For alternative representations the
reader can consult Gourieroux and Monfort (1997).

Let us start with the stationary case. Consider the ARMA(p,q) process
defined by (3.4), assuming for simplicity that µ is zero. The defining relation
can be written as

Yt =

r∑

j=1

φjYt−j +

r−1∑

j=1

ψjǫt−j + ǫt,

with r = max{p, q + 1}, φj = 0 for j > p and ψj = 0 for j > q. Define the
matrices

F =
[
1 0 . . . 0

]
,

G =





φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
. . .

φr−1 0 . . . 0 1
φr 0 . . . 0 0




,

R =
[
1 ψ1 . . . ψr−2 ψr−1

]′
.

(3.23)

If one introduces an r-dimensional state vector θt = (θ1,t, . . . , θr,t)
′, then the

given ARMA model has the following DLM representation:
{

Yt = Fθt,

θt+1 = Gθt +Rǫt.
(3.24)

This is a DLM with V = 0 and W = RR′σ2, where σ2 is the variance of
the error sequence (ǫt). To verify this equivalence, note that the observation
equation gives yt = θ1,t and the state equation is

θ1,t = φ1 θ1,t−1 + θ2,t−1 + ǫt

θ2,t = φ2 θ1,t−1 + θ3,t−1 + ψ1ǫt

...

θr−1,t = φr−1 θ1,t−1 + θr,t−1 + ψr−2 ǫt

θr,t = φr θ1,t−1 + ψr−1 ǫt.

(3.25)

Substituting the expression of θ2,t−1, obtained from the second equation, in
the first equation, we have
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θ1,t = φ1θ1,t−1 + φ2θ1,t−2 + θ3,t−2 + ψ1ǫt−1 + ǫt

and proceeding by successive substitutions we eventually get

θ1,t = φ1θ1,t−1 + · · · + φrθ1,t−r + ψ1ǫt−1 + · · · + ψr−1ǫt−r−1 + ǫt .

Recalling that r = max{p, q + 1} and yt = θ1,t we see that this is the ARMA
model (3.4).

The DLM representation (3.24) might appear quite artificial. To develop
a better understanding, let us look at the simpler case of pure autoregressive
models, for example the AR(2) model

Yt = φ1Yt−1 + φ2Yt−2 + ǫt, ǫt
iid∼ N (0, σ2). (3.26)

One might think of a simpler representation of the AR(2) as a DLM with
observation equation having Ft = [Yt−1, Yt−2] and θt = [φ1,t, φ2,t]

′ (thus, pos-
sibly including a temporal evolution of the AR parameters, otherwise letting
W = 0). However, the matrix Ft of a DLM cannot depend on past values of
the observations: in our case, the above choice of Ft would imply

Yt|yt−1, yt−2, θt ∼ N(φ1yt−1 + φ2yt−2, σ
2),

that is, Yt would not be independent on the past values yt−1, yt−2 given θt,
thus violating assumption (A.2) in the definition of state space model (p.40).
In order to consider such a model we would have to extend the definition
to include conditionally Gaussian state space models (Lipster and Shiryayev;
1972). In order to stay within the boundaries of the standard definition used
in this book, the first trick that we have used in the DLM representation (3.4)
is thus to “shift” the AR(2) dependence from Yt to the state vector: Yt = θ1,t.
However, the second basic assumption of state space models is that the state
process is Markovian, thus we need a second trick for representing the second
order dependence. We augmented the state vector by a second component
θ2,t, and we chose G and W such that

[
θ1,t
θ2,t

]
=

[
φ1 1
φ2 0

] [
θ1,t−1

θ2,t−1

]
+

[
ǫt
0

]
,

giving
θ1,t = φ1θ1,t−1 + φ2θ1,t−2 + ǫt.

In this way, we obtain a DLM representation of AR(p) models in the frame-
work of state-space models as defined by assumptions (A.1) and (A.2) in
Section 2.3. A further step is needed for expressing the MA(q) component.
For example, for the ARMA(1,1) model

Yt = φ1Yt−1 + ǫt + ψ1ǫt−1, ǫt ∼ N (0, σ2), (3.27)

r = q + 1 = 2 and the matrices of the corresponding DLM are
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F =
[
1 0
]
, V = 0,

G =

[
φ1 1
0 0

]
, W =

[
1 ψ1

ψ1 ψ
2
1

]
σ2.

(3.28)

Representing an ARMA model as a DLM is useful mainly for two reasons.
The first is that an ARMA component in a DLM can explain residual auto-
correlation not accounted for by other structural components such as trend
and seasonal. The second reason is technical, and consists in the fact that the
evaluation of the likelihood function of an ARMA model can be performed
efficiently by applying the general recursion used to compute the likelihood of
a DLM.

The DLM representation of an ARIMA(p, d, q) model, with d > 0, can
be derived as an extension of the stationary case. In fact, if one considers
Y ∗
t = ∆dYt, then Y ∗

t follows a stationary ARMA model, for which the DLM
representation given above applies. In order to model the original series (Yt)
we need to be able to recover it from the Y ∗

t and possibly other components
of the state vector. For example, if d = 1, Y ∗

t = Yt − Yt−1 and therefore
Yt = Y ∗

t + Yt−1. Suppose that Y ∗
t satisfies the AR(2) model (3.26). Then a

DLM representation for Yt is given by the system






Yt =
[
1 1 0

]
θt−1,

θt =




1 1 0
0 φ1 0
0 φ2 1



 θt−1 + wt, wt ∼ N (0,W ),
(3.29)

with

θt =




Yt−1

Y ∗
t

φ2Y
∗
t−1



 (3.30)

and W = diag(0, σ2, 0). For a general d, set Y ∗
t = ∆dYt. It can be shown that

the following relation holds:

∆d−jYt = Y ∗
t +

j∑

i=1

∆d−iYt−1, j = 1, . . . , d. (3.31)

Define the state vector as follows:
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θt =





Yt−1

∆Yt−1

...
∆d−1Yt−1

Y ∗
t

φ2Y
∗
t−1 + · · · + φrY

∗
t−r+1 + ψ1ǫt = · · · + ψr−1ǫt−r+2

φ3Y
∗
t−1 + · · · + φrY

∗
t−r+2 + ψ2ǫt = · · · + ψr−1ǫt−r+3

...
φrY

∗
t−1 + ψr−1ǫt





. (3.32)

Note that the definition of the last components of θt follows from equa-
tions (3.25). The system and observation matrices, together with the system
variance, are defined by

F =
[
1 1 . . . 1 0 . . . 0

]
,

G =





1 1 . . . 1 0 . . . . . . 0
0 1 . . . 1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . 1 1 0 . . . . . . 0
0 . . . 0 φ1 1 0 . . . 0
. . . . . . . . φ2 0 1 . . . 0

...
...

...
. . .

. . . . . . . . φr−1 0 . . . 0 1
0 . . . 0 φr 0 . . . 0 0





,

R =
[
0 . . . 0 1 ψ1 . . . ψr−2 ψr−1

]′
,

W = RR′σ2.

(3.33)

With the above definition the ARIMA model for (Yt) has the DLM represen-
tation {

Yt = Fθt,

θt = Gθt−1 + wt, wt ∼ N (0,W ).
(3.34)

Since in DLM modeling a nonstationary behavior of the observations is usu-
ally accounted for directly, through the use of a polynomial trend or a seasonal
component for example, the inclusion of nonstationary ARIMA components is
less common than that of stationary ARMA components that, as we already
mentioned, are typically used to capture correlated noise in the data.

3.2.6 Example: estimating the output gap

Measuring the so-called output gap is an important issue in monetary politics.
The output gap is the difference between the observed Gross Domestic Prod-
uct of a country (GDP, or output) and the potential output of the economy.
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It is this discrepancy that is considered relevant in determining inflationary
tendencies. Thus, it is crucial to be able to separate the two components and,
since they are unobservable, treating them as latent states in a DLM results
particularly attractive.

Variants of the following model for the deseasonalized output have been
considered in the econometric literature; see, e.g., Kuttner (1994):

Yt = Y
(p)
t + Y

(g)
t ,

Y
(p)
t = Y

(p)
t−1 + δt + ǫt, ǫt ∼ N (0, σ2

ǫ ),

δt = δt−1 + zt, zt ∼ N (0, σ2
z),

Y
(g)
t = φ1Y

(g)
t−1 + φ2Y

(g)
t−2 + ut, ut ∼ N (0, σ2

u),

(3.35)

where Yt is the logarithm of the output, Y
(p)
t represents the log-potential

output and Y
(g)
t is the log of the output gap. The above model can be seen as

a DLM, obtained by adding, in the sense discussed in Section 3.2, a stochastic
trend component for the potential output and a stationary AR(2) residual
component. More specifically,

• Y
(p)
t follows a linear growth model, observed without error. The state

vector is θ
(p)
t = (Y

(p)
t , δt)

′, with innovation vector w
(p)
t = (ǫt, zt)

′. The
observation matrix and observation variance are

F(p) =
[
1 0
]
, V (p) = [ 0 ],

while the system evolution matrix and innovation variance are

G(p) =

[
1 1
0 1

]
, W (p) = diag(σ2

ǫ , σ
2
z).

The error terms ǫt and zt are interpreted as shocks to the output level and
to the output growth rate, respectively. Note that the case σ2

ǫ = σ2
z = 0

corresponds to the global trend model y
(p)
t = µ0 + tδ0, while σ2

ǫ = 0 gives
an integrated random walk model.

• The output gap Y
(g)
t is described by an AR(2) model, which can be written

as a DLM with θ
(g)
t = (Y

(g)
t , θ

(g)
t,2 )′ and

F (g) =
[
1 0
]
, V (g) = [ 0 ],

G(g) =

[
φ1 1
φ2 0

]
, W (g) = diag(σ2

u, 0).

The order of the AR process allows the residuals, i.e., the departures from
the trend, to have a dumped cyclic autocorrelation function, which is often
observed in economic time series. The DLM representation of model (3.35)
for Yt is obtained by adding the two components, as described in Section 3.2.
The matrices of the resulting DLM are:
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F =
[
1 0 1 0

]
,

G =





1 1 0 0
0 1 0 0
0 0 φ1 1
0 0 φ2 0



 ,

V = [ 0 ]

W = diag
(
σ2
ǫ , σ

2
z , σ

2
u, 0
)
.

(3.36)

The resulting DLM has five unknown parameters: σ2
ǫ and σ2

z for the trend
component, and φ1, φ2 and σ2

u for the AR(2) component. Here, we estimate
the unknown parameters by maximum likelihood (see Chapter 4) and then
apply the Kalman filter and smoother using their MLE. In Section 4.6.1 we
will illustrate a Bayesian approach to make inference both on the unknown
parameters of the model and on the unobservable states at the same time.

For a practical application, we consider quarterly deseasonalized GDP of
the US economy (source: Bureau of Economic Analysis), measured in billions
of chained 2000 US dollars, from 1950.Q1 to 2004.Q4. A logarithmic transform
is applied, and the resulting log GDP is plotted in Figure 3.10.
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Fig. 3.10. Time plot of log US Gross Domestic Product

R code

> gdp <- read.table("Datasets/gdp5004.dat")

2 > gdp <- ts(gdp, frequency = 4, start = 1950)
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> Lgdp <- log(gdp)

4 > plot(Lgdp, xlab = "", ylab = "log US GDP")

We first compute the MLE of the unknown parameters ψ1 = log(σ2
ǫ ), ψ2 =

log(σ2
z), ψ3 = log(σ2

u), ψ4 = φ1, ψ5 = φ5. For the moment, we do not impose
stationarity restrictions on the AR(2) parameters φ1, φ2; we will return to this

later. We choose convenient values for the initial mean m
(p)
0 of the states of

the trend component, with a fairly large variance C
(p)
0 , and use the default

initial values in the R function dlmModArma for the AR(2) component. The
MLE fitting function, as well as dlmFilter, do not allow singular observation
variances, so we take a very small value for V , which can be considered zero
for all practical purposes.

R code

> level0 <- Lgdp[1]

2 > slope0 <- mean(diff(Lgdp))

> buildGap <- function(u) {
4 + trend <- dlmModPoly(dV = 1e-7, dW = exp(u[1 : 2]),

+ m0 = c(level0, slope0),

6 + C0 = 2 * diag(2))

+ gap <- dlmModARMA(ar = u[4 : 5], sigma2 = exp(u[3]))

8 + return(trend + gap)}
> init <- c(-3, -1, -3, .4, .4)

10 > outMLE <- dlmMLE(Lgdp, init, buildGap)

> dlmGap <- buildGap(outMLE$par)

12 > sqrt(diag(W(dlmGap))[1 : 3])

[1] 5.781792e-03 7.637864e-05 6.145361e-03

14 > GG(dlmGap)[3 : 4, 3]

[1] 1.4806246 -0.5468102

Thus the MLE estimates are σ̂ǫ = 0.00578, σ̂z = 0.00008, σ̂u = 0.00615, φ̂1 =
1.481, φ2 = −0.547. The estimated AR(2) parameters satisfy the stationarity
constraints.

R code

> Mod(polyroot(c(1, -GG(dlmGap)[3 : 4, 3])))

2 [1] 1.289162 1.418587

> plot(ARMAacf(ar = GG(dlmGap)[3 : 4, 3], lag.max = 20),

4 + ylim = c(0, 1), ylab = "acf", type = "h")

A note of caution is in order. There are clearly identifiability issues in separat-
ing the stochastic trend and the AR(2) residuals, and MLE is not stable; as a
minimal check, one should repeat the fitting procedure starting from different
sets of initial values.
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Fig. 3.11. Observed log GDP (grey) and smoothing estimate of the potential output

Plugging in the MLE, smoothing estimates of the model are finally com-
puted. The observed output and the smoothing estimate of the potential out-
put are plotted in Figure 3.11. Figure 3.12 shows the smoothing estimates of
the potential output, together with the output gap (note the different scale).

R code

> gdpSmooth <- dlmSmooth(Lgdp, dlmGap)

2 > plot(cbind(Lgdp, dropFirst(gdpSmooth$s[, 1])),

+ xlab = "", ylab = "Log GDP", lty = c("longdash", "solid"),

4 + col = c("darkgrey", "black"), plot.type = "single")

> plot(dropFirst(gdpSmooth$s[, 1:3]), ann = F, yax.flip = TRUE)

Finally, let us see how we could introduce stationarity constraints in the
MLE, using the R function ARtransPars.

R code

> buildgapr <- function(u)

2 + {
+ trend <- dlmModPoly(dV = 0.000001,

4 + dW = c(exp(u[1]), exp(u[2])),

+ m0 = c(Lgdp[1], mean(diff(Lgdp))),

6 + C0 = 2 * diag(2))

+ gap <- dlmModARMA(ar = ARtransPars(u[4 : 5]),

8 + sigma2 = exp(u[3]))

+ return(trend + gap)
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Fig. 3.12. Smoothing estimates of the potential output (top) and output-gap (bot-
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10 + }
> init <- c(-3, -1, -3, .4, .4)

12 > outMLEr <- dlmMLE(Lgdp,init,buildgapr)

> outMLEr$value

14 [1] -896.5234

> parMLEr <- c(exp(outMLEr$par[1 : 3])^.5,

16 + ARtransPars(outMLEr$par[4 : 5]))

> round(parMLEr, 4)

18 [1] 0.0051 0.0000 0.0069 1.4972 -0.4972

We obtained a slightly better value of the likelihood. Yet, the estimates
of the AR(2) parameters are now too close to the nonstationary region. It
is anyway a useful exercise to look at the smoothing estimates of the poten-
tial output and of the output gap in this case: nonstationarity of the AR(2)
residuals gives a nonrealistic estimated pattern for the output gap (figures not
shown).

R code

> Mod(polyroot(c(1, -ARtransPars(outMLEr$par[4 : 5]))))

2 [1] 1.000001 2.011090

> plot(ARMAacf(ar = ARtransPars(outMLEr$par[4 : 5]),

4 + lag.max = 10),

+ ylim = c(0, 1), ylab = "acf")

6 > modr <- buildgapr(outMLEr$par)
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> outFr <- dlmFilter(Lgdp, modr)

8 > outSr <- dlmSmooth(outFr)

> ts.plot(cbind(Lgdp, outSr$s[-1, 1]), col = 1 : 2)

10 > plot.ts(outSr$s[-1, c(1, 3)])

We will return to this example in Chapter 4, showing how we can impose
stationarity constraints through a prior distribution on the AR parameters,
in a Bayesian approach.

3.2.7 Regression models

Regression components can be quite easily incorporated in a DLM. It is of
interest in many applications to include the effect of explanatory variables
on a time series (Yt). For example, in a clinical trial, one may be interested
in studying a response Yt to different drug doses xt over time. Note that
the explanatory variable xt is nonstochastic; the case of stochastic regression
requires a joint model for the bivariate time series (Xt, Yt), t ≥ 1 and will be
discussed later.

The standard linear regression model for Y on x is defined as

Yt = β1 + β2xt + ǫt, ǫt
iid∼ N (0, σ2).

However, the assumption of i.i.d. errors is often not realistic if the observations
are taken over time. A possible solution is to introduce a temporal dependence
for the residuals, e.g., describing (ǫt : t ≥ 1) as an autoregressive process.
Another choice, which is in fact quite interesting in many problems, is to
think that the relationship between y and x evolves over time. That is, to
consider a dynamic linear regression model of the form

Yt = β1,t + β2,txt + ǫt, ǫt
iid∼ N (0, σ2),

and model the temporal evolution of (β1,t, β2,t), e.g., βj,t = βj,t−1 + wj,t,
j = 1, 2, w1,t and w2,t independent. This gives a DLM with Ft =

[
1 xt

]
,

θt =
[
β1,t β2,t

]′
, V = σ2, completed by a state equation for θt.

More generally, a dynamic linear regression model is described by

Yt = x′tθt + vt, vt ∼ N (0, σ2
t )

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt)

where x′t =
[
x1,t · · · xp,t

]
are the values of the p explanatory variables at time

t. Again, note that xt is not stochastic; in other terms, this is a conditional
model for Yt|xt. A popular default choice for the state equation is to take the
evolution matrix Gt as the identity matrix andW diagonal, which corresponds
to modeling the regression coefficients as independent random walks.
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A regression DLM, with the above assumptions for G and W , can be cre-
ated in R through the function dlmModReg. The static linear regression model
corresponds to the case where Wt = 0 for any t, so that θt is constant over
time, θt = θ, with prior density θ ∼ N (m0, C0). Thus, the function dlmModReg

can also be used for Bayesian inference in linear regression; the filtering den-
sity gives the posterior density of θ|y1:t, and mt = E(θ|y1:t) is the Bayesian
estimate under a quadratic loss function of the regression coefficients. This
also suggests that DLM techniques may be used to sequentially update the
estimates of the parameters of a (static) regression model as new observations
become available.

Example — Capital asset pricing model

The capital asset pricing model (CAPM) is a popular asset pricing tool in
financial econometrics; see for example Campbell et al. (1996). In its simplest,
univariate version, the CAPM model assumes that the returns on an asset
depend linearly on the overall market returns, thus allowing us to study the
behavior, in terms of risk and expected returns, of individual assets compared
to the market as a whole. Here we consider a dynamic version of the standard,
static CAPM model; in Section 3.3.3, it will be extended to a multivariate
CAPM for a small portfolio of m assets.

Let rt, r
(M)
t and r

(f)
t be the returns at time t of the asset under study, of

the market and of a risk-free asset, respectively. Define the excess returns of

the asset as yt = rt− r(f)
t and the market’s excess returns as xt = r

(M)
t − r(f)

t .
A univariate CAPM assumes that

yt = α+ β xt + vt, vt
iid∼ N(0, σ2). (3.37)

The parameter β measures the sensitivity of the asset excess returns to changes
in the market. A value of β greater than one suggests that the asset tends
to amplify changes in the market returns, and it is therefore considered an
aggressive investment; while assets having β smaller than one are thought of
as conservative investments.

The data for this example consists of monthly returns3 from January 1978
to December 1987 of four stocks (Mobil, IBM, Weyer, and Citicorp), of the 30-
day Treasury Bill as a proxy for the risk-free asset, and of the value-weighted
average returns for all the stocks listed at the New York and American Stock
Exchanges, representing the overall market returns. The data are plotted in
Figure 3.13. Let us consider the data for the IBM stock here; a multivariate
CAPM will be illustrated later.

Least squares estimates for the static CAPM are obtained in R by the
function lm. We can also compute Bayesian estimates of the regression coef-

3 The data, originally from Berndt (1991), are available at the time of writing from
http://shazam.econ.ubc.ca/intro/P.txt.
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ficients by the function dlmModReg, letting diag(W ) = (0, 0) (while assuming,
for simplicity, a known measurement variance).

R code

> capm <- read.table("http://shazam.econ.ubc.ca/intro/P.txt",

2 + header = TRUE)

> capm.ts <- ts(capm, start = c(1978, 1), frequency = 12)

4 > colnames(capm)

[1] "MOBIL" "IBM" "WEYER" "CITCRP" "MARKET" "RKFREE"

6 > plot(capm.ts)

> IBM <- capm.ts[, "IBM"] - capm.ts[, "RKFREE"]

8 > x <- capm.ts[, "MARKET"] - capm.ts[, "RKFREE"]

> outLM <- lm(IBM ~ x)

10 > outLM$coef

(Intercept) x

12 -0.0004895937 0.4568207721

> acf(outLM$res)

14 > qqnorm(outLM$res)

Despite the data being taken over time, the residuals do not show relevant
temporal dependence (plots not shown). Bayesian estimates of the regression
coefficients are obtained below. For simplicity, we let V = σ̂2 = 0.00254. Prior
information on the values of α and β can be introduced through the prior,
N (m0, C0); below, we assume vague prior information on α, while the prior
guess on β is 1.5 (aggressive investment), with a fairly small variance.

R code

> mod <- dlmModReg(x, dV = 0.00254, m0 = c(0, 1.5),

2 + C0 = diag(c(1e+07, 1)))

> outF <- dlmFilter(IBM, mod)

4 > outF$m[1 + length(IBM), ]

[1] -0.0005232801 0.4615301204

The filtering estimates at the end of the observation period are the Bayes
estimates, under quadratic loss, of the regression coefficients; here, the results
are very close to the OLS estimates. As a matter of fact, it seems more natural
to allow the CAPM coefficients α and β to vary over time; for example, a stock
might evolve from “conservative” to “aggressive.” A dynamic version of the
classical CAPM is obtained as

yt = αt + βtxt + vt, vt
iid∼ N(0, σ2),

with a state equation modeling the dynamics of αt and βt. As mentioned
above, the function dlmModReg assumes that the regression coefficients fol-
low independent random walks. Below, the observation and state evolution
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Fig. 3.13. Montly returns for Mobil, IBM, Weyer and Citicorp stocks; market index;
30-days Treasury bill (January 1978-December 1987)

variances are estimated by maximum likelihood. The smoothing estimates are
shown in Figure 3.14. The results can be compared with those obtained in
Section 3.3.3, where the model is estimated jointly for the four stocks.

R code

> buildCapm <- function(u) {
2 + dlmModReg(x, dV = exp(u[1]), dW = exp(u[2 : 3]))

+ }
4 > outMLE <- dlmMLE(IBM, parm = rep(0, 3), buildCapm)

> exp(outMLE$par)

6 [1] 2.328397e-03 1.100181e-05 6.496259e-04
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> outMLE$value

8 [1] -276.7014

> mod <- buildCapm(outMLE$par)

10 > outS <- dlmSmooth(IBM, mod)

> plot(dropFirst(outS$s))
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Fig. 3.14. Smoothing estimates of the coefficients of a dynamic CAPM model for
the IBM stock returns

Further examples of dynamic regression with DLMs will be presented in
the following sections, for more general, multivariate settings, such as longitu-
dinal data, of the kind (xi,t, Yi,t), t ≥ 1, i = 1, . . . ,m, or more simply (xt, Yi,t)
(e.g., dose xi,t of a drug and response Yi,t at time t for patient i, i = 1, . . . ,m;
or market returns xt and excess returns Yi,t for asset i; see Section 3.3.3); or
time series of cross-sectional data, where x and Y are observed form statistical
units, as above, but usually m is large; see Section 3.3.5.

3.3 Models for multivariate time series

Modeling multivariate time series is of course more interesting—and more
challenging—than studying univariate models, and also in this case DLMs
offer a very flexible framework for the analysis. In this section we just present
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a few examples of the extremely large variety of applications of DLMs to
multivariate data, hoping that the reader can find tools and ideas for the
analysis of her specific problems and models.

One can envision two basic types of data and problems in the analy-
sis of multivariate time series. In many applications, one has data Yt =
(Y1,t, . . . , Ym,t)

′ on one or more variables observed for different units; for ex-
ample, Yt could be the gross domestic product observed for m countries over
time, or the income and the expenses for a group of m families, or Yi,t could
be the historical returns of stock i, i = 1, . . . ,m, etc. In these cases, the fo-
cus of interest is typically in understanding the correlation structure among
the time series, perhaps investigating the presence of clusters. These aspects
might be of interest in themselves, or for improving the predictive performance
of the model. In other contexts, the data are observations on one or more
variables of interest Y and on some explanatory variables X1, . . . , Xk. For
example, Y could be the inflation rate and X1, . . . , Xk be relevant macroe-
conomic variables for a country. We have again a multivariate time series
(Yt, X1,t, . . . , Xk,t), but now the emphasis is on explaining or predicting the
variable of interest Yt by means of the explanatory variables Xj,t, so we are
more in a regression framework. Note that in the regression DLM discussed
in Section 3.2.7, the covariates were deterministic, while here X1,t, . . . , Xk,t

are random variables. Of course by a joint model for (Yt, X1,t, . . . , Xk,t) one
can also study feedback effects and causality relations among all variables.

3.3.1 DLMs for longitudinal data

Suppose that the value of a quantity y is observed for m statistical units over
time, so we have a multivariate time series (Yt)t≥1, with Yt = (Y1,t, . . . , Ym,t)

′.
In fact, the simplest approach would be to study the m series independently,
specifying a univariate model for each of them. This approach might give
fairly good forecasts, but it doesn’t do what is sometimes called “borrowing
strength;” that is, in predicting Y for individual i, say, we do not exploit
the information provided by the similar time series (Yj,t) for j 6= i. In or-
der to use all the available information, we want to introduce dependence
across the time series, that is, we want a joint model for the m-variate process
((Y1,t, . . . , Ym,t) : t = 1, 2, . . .).

One way of introducing dependence across the time series (Y1,t), . . . , (Ym,t)
is the following. Suppose that we can reasonably model each of the m time
series using the same type of DLM, possibly with different variances but with
the same time-invariant matrices G and F ; that is

Yi,t = Fθ
(i)
t + vi,t, vi,t ∼ N (0, Vi)

θ
(i)
t = Gθ

(i)
t−1 + w

(i)
t , wi,t ∼ Np(0,Wi),

(3.38)

i = 1, . . . ,m. This corresponds to the qualitative assumption that all series
follow the same type of dynamics. It also implies that the components of
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the state vectors have similar interpretations across the different DLM, but
they can assume different values for each time series (Yi,t). Furthermore, as
we shall discuss more extensively in Chapter 4, the variance matrices of the
individual DLMs (3.38) might not be completely known, but be dependent on
some unknown parameters, ψi say. For example, in a regression DLM of the
kind discussed in Section 3.2.7, we would have

Yi,t = αi,t + βi,txt + vi,t, vi,t
iid∼ N(0, σ2

i )

αi,t = αi,t−1 + w1t,i, w1t,i
iid∼ N(0, σ2

w1,i)

βi,t = βi,t−1 + w2t,i, w2t,i
iid∼ N(0, σ2

w2,i)

so that the model for Yi,t is characterized by its own state vector θ
(i)
t =

(αi,t, βi,t) and by its parameters ψi = (σ2
i , σ

2
w1,i

, σ2
w2,i

). In this framework
we can assume that the time series (Y1,t), . . . , (Ym,t) are conditionally in-

dependent given the state processes (θ
(1)
t ), . . . , (θ

(m)
t ) and the parameters

(ψ1, . . . , ψm), with (Yi,t) depending only on its state (θ
(i)
t ) and parameters

ψi; in particular

(Y1,t, . . . , Ym,t)|θ(1)t , . . . , θ
(m)
t , ψ1, . . . , ψm ∼

m∏

i=1

N (yi,t;Fθ
(i)
t , Vi(ψi)).

Note that this framework is similar to the one studied in Section 1.3. A de-
pendence among Y1,t, . . . , Ym,t can be introduced through the joint probabil-

ity law of (θ
(1)
t , . . . , θ

(m)
t ) and/or of the parameters (ψ1, . . . , ψm). If the states

and the parameters are independent across individuals, then the time series
(Y1,t), . . . , (Ym,t) are independent, and there is no borrowing strength; on the
other hand, a dependence across the individual states and parameters implies
dependence across the m time series. In the next sections we will provide some
examples, where, for simplicity, the parameters, i.e., the matrices F,G, Vi,Wi,
are known; their estimate (MLE and Bayesian) will be discussed in Chapter
4. A recent reference for mixtures of DLMs is Frühwirth-Schnatter and Kauf-
mann (2008). Also related are the articles by Caron et al. (2008) and Lau and
So (2008).

3.3.2 Seemingly unrelated time series equations

Seemingly unrelated time series equations (SUTSE) are a class of models

which specify the dependence structure among the state vectors θ
(1)
t , . . . , θ

(m)
t

as follows. As we said, the model (3.38) corresponds to the qualitative assump-
tion that all series follow the same type of dynamics, and that the components
of the state vectors have similar interpretations across the different DLMs. For
example, each series might be modeled using a linear growth model, so that for
each of them the state vector has a level and a slope component and, although
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not strictly required, it is commonly assumed for simplicity that the variance
matrix of the system errors is diagonal. This means that the evolution of level
and slope is governed by independent random inputs. Clearly, the individual
DLMs can be combined to give a DLM for the multivariate observations. A
simple way of doing so is to assume that the evolution of the levels of the series
is driven by correlated inputs, and the same for the slopes. In other words,
at any fixed time, the components of the system error corresponding to the
levels of the different series may be correlated, and the components of the
system error corresponding to the different slopes may be correlated as well.
To keep the model simple, we retain the assumption that levels and slopes
evolve in an uncorrelated way. This suggests describing the joint evolution of
the state vectors by grouping together all the levels and then all the slopes in
an overall state vector θt = (µ1,t, . . . , µm,t, β1,t, . . . , βm,t)

′. The system error
of the dynamics of this common state vector will then be characterized by
a block-diagonal variance matrix having a first m ×m block accounting for
the correlation among levels and a second m × m block accounting for the
correlation among slopes. To be specific, suppose one has m = 2 series. Then
θt = (µ1,t, µ2,t, β1,t, β2,t)

′ and the system equation is




µ1,t

µ2,t

β1,t

β2,t



 =





1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









µ1,t−1

µ2,t−1

β1,t−1

β2,t−1



+





w1,t

w2,t

w3,t

w4,t



 , (3.39a)

where (w1,t, w2,t, w3,t, w4,t)
′ ∼ N (0,W ) and

W =




Wµ

0 0
0 0

0 0
0 0

Wβ



 . (3.39b)

The observation equation for the bivariate time series
(
(Y1,t, Y2,t)

′ : t =
1, 2, . . .) is [

Y1,t

Y2,t

]
=

[
1 0 0 0
0 1 0 0

]
θt +

[
v1,t
v2,t

]
, (3.39c)

with (v1,t, v2,t)
′ ∼ N (0, V ). In order to introduce a further correlation between

the series, the observation error variance V can be taken nondiagonal.
The previous example can be extended to the general case of m univariate

time series. Let Yt denote the multivariate observation at time t, and suppose
that the ith component of Yt follows a time invariant DLM as in (3.38), where

θ
(i)
t = (θ

(i)
1,t, . . . , θ

(i)
p,t)

′ for i = 1, . . . ,m. Then a SUTSE model for (Yt) has the

form4

4 Given two matrices A and B, of dimensions m × n and p × q respectively, the
Kronecker product A⊗B is the mp× nq matrix defined as

2

6

4

a1,1B · · · a1,nB
...

...
...

am,1B · · · am,nB

3

7

5
.
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{
Yt = (F ⊗ Im) θt + vt, vt ∼ N (0, V ),

θt = (G⊗ Im) θt−1 + wt, wt ∼ N (0,W ),
(3.40)

with θt = (θ
(1)
1,t , θ

(2)
1,t , . . . , θ

(m−1)
p,t , θ

(m)
p,t )′. When the w

(i)
t have diagonal vari-

ances, it is common to assume for W a block-diagonal structure with p blocks
of size m. An immediate implication of the structure of the model is that

forecasts made at time t of θ
(i)
t+k or Yi,t+k are based on the distribution of θ

(i)
t

given all the observations y1:t.

Example — Annual Denmark and Spain investments
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Fig. 3.15. Annual Denmark and Spain investments

Figure 3.15 shows the annual investment in Denmark and Spain from 1960
to 20005. From visual inspection it appears that the two series display the same

5 Source: http://www.fgn.unisg.ch/eumacro/macrodata.
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type of qualitative behavior, that can be modeled by a linear growth DLM.
This is the model we used on page 97 for the investments in Spain series
alone. To set up a multivariate model for the two series one can combine the
two linear growth models in a comprehensive SUTSE model. This turns out
to be exactly of the form described by (3.39). There are six variances and
three covariances in the model, for a total of nine parameters that need to
be specified—or estimated from the data, as we will see in the next chapter.
It is convenient to simplify slightly the model in order to reduce the overall
number of parameters. So, for this example, we are going to assume that
the two individual linear growth models are in fact integrated random walks.
This means that, in (3.39b), Wµ = 0. The MLE estimates of the remaining
parameters are

Wβ =

[
49 155
155 437266

]
, V =

[
72 1018

1018 14353

]
.

The display below shows how to set up the model in R. In doing this we start
by constructing a (univariate) linear growth model and then redefine the F
and G matrices according to (3.40), using Kronecker products (lines 2 and 3).
This approach is less subject to typing mistakes than manually entering the
individual entries of F and G. The part of the code defining the variances V
and W is straightforward.
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Fig. 3.16. Denmark investments and one step-ahead forecasts
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Fig. 3.17. Spain investments and one step-ahead forecasts

R code

> mod <- dlmModPoly(2)

2 > mod$FF <- mod$FF %x% diag(2)

> mod$GG <- mod$GG %x% diag(2)

4 > W1 <- matrix(0, 2, 2)

> W2 <- diag(c(49, 437266))

6 > W2[1, 2] <- W2[2, 1] <- 155

> mod$W <- bdiag(W1, W2)

8 > V <- diag(c(72, 14353))

> V[1, 2] <- V[2, 1] <- 1018

10 > mod$V <- V

> mod$m0 <- rep(0, 4)

12 > mod$C0 <- diag(4) * 1e7

> investFilt <- dlmFilter(invest, mod)

14 > sdev <- residuals(investFilt)$sd

> lwr <- investFilt$f + qnorm(0.25) * sdev

16 > upr <- investFilt$f - qnorm(0.25) * sdev

The code also illustrates how to compute probability intervals for the one-
step-ahead forecasts, shown in Figures 3.16 and 3.17. Note that conditionally
on y1:t−1, Yt and et have the same variance, see Section 2.8. This justifies
the use of the innovation variances in lieu of the one-step-ahead observation
forecast variances on line 14.
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3.3.3 Seemingly unrelated regression models

As an example of how the idea expressed by SUTSE can be applied to more
general DLMs than the basic structural model, we present below a multivariate
dynamic regression model.

Let us consider a multivariate version of the dynamic CAPM illustrated

on pages 122-125. Again, let xt = r
(M)
t − r

(f)
t be the excess market returns,

but we have now a vector of excess returns for m assets, yi,t = ri,t − r
(f)
t ,

i = 1, . . . ,m. For each asset, we can define a regression DLM

yi,t = αi,t + βi,txt + vi,t

αi,t = αi,t−1 + w1i,t

βi,t = βi,t−1 + w2i,t,

and it is sensible to assume that the intercepts and the slopes are correlated
across the m stocks. A seemingly unrelated regression model (SUR) is defined
as

yt = (Ft ⊗ Im)θt + vt, vt
iid∼ N (0, V ),

θt = (G⊗ Im)θt−1 + wt, wt
iid∼ N (0,W ),

with

yt =




y1,t
...

ym,t



 , θt =





α1,t

...
αm,t
β1,t

...
βm,t





, vt =




v1,t
...

vm,t



 , wt =




w1,t

...
w2m,t



 ,

Ft =
[
1 xt

]
, G = I2, and W = blockdiag(Wα,Wβ).

The data we analyze are the monthly returns for the Mobil, IBM, Weyer,
and Citicorp stocks, 1978.1-1987.12, described on page 122. We assume for
simplicity that the αi,t are time-invariant, which amounts to assuming that
Wα = 0. The correlation between the different excess returns is explained in
terms of the nondiagonal variance matrices V and Wβ , estimated from the
data:

V =





41.06 0.01571 −0.9504 −2.328
0.01571 24.23 5.783 3.376
−0.9504 5.783 39.2 8.145
−2.328 3.376 8.145 39.29



 ,

Wβ =





8.153 · 10−7 −3.172 · 10−5 −4.267 · 10−5 −6.649 · 10−5

−3.172 · 10−5 0.001377 0.001852 0.002884
−4.267 · 10−5 0.001852 0.002498 0.003884
−6.649 · 10−5 0.002884 0.003884 0.006057



 .
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Smoothing estimates of the βi,t’s, shown in Figure 3.18, can be obtained using
the code below.

R code

> tmp <- ts(read.table("http://shazam.econ.ubc.ca/intro/P.txt",

2 + header = TRUE),

+ start = c(1978, 1), frequency = 12) * 100

4 > y <- tmp[, 1 : 4] - tmp[, "RKFREE"]

> colnames(y) <- colnames(tmp)[1 : 4]

6 > market <- tmp[, "MARKET"] - tmp[, "RKFREE"]

> rm("tmp")

8 > m <- NCOL(y)

> ### Set up the model

10 > CAPM <- dlmModReg(market)

> CAPM$FF <- CAPM$FF %x% diag(m)

12 > CAPM$GG <- CAPM$GG %x% diag(m)

> CAPM$JFF <- CAPM$JFF %x% diag(m)

14 > CAPM$W <- CAPM$W %x% matrix(0, m, m)

> CAPM$W[-(1 : m), -(1 : m)] <-

16 + c(8.153e-07, -3.172e-05, -4.267e-05, -6.649e-05,

+ -3.172e-05, 0.001377, 0.001852, 0.002884,

18 + -4.267e-05, 0.001852, 0.002498, 0.003884,

+ -6.649e-05, 0.002884, 0.003884, 0.006057)

20 > CAPM$V <- CAPM$V %x% matrix(0, m, m)

> CAPM$V[] <- c(41.06, 0.01571, -0.9504, -2.328,

22 + 0.01571, 24.23, 5.783, 3.376,

+ -0.9504, 5.783, 39.2, 8.145,

24 + -2.328, 3.376, 8.145, 39.29)

> CAPM$m0 <- rep(0, 2 * m)

26 > CAPM$C0 <- diag(1e7, nr = 2 * m)

> ### Smooth

28 > CAPMsmooth <- dlmSmooth(y, CAPM)

> ### Plot

30 > plot(dropFirst(CAPMsmooth$s[, m + 1 : m]),

+ lty = c("13", "6413", "431313", "B4"),

32 + plot.type = "s", xlab = "", ylab = "Beta")

> abline(h = 1, col = "darkgrey")

34 > legend("bottomright", legend = colnames(y), bty = "n",

+ lty = c("13", "6413", "431313", "B4"), inset = 0.05)

Apparently, while Mobil’s beta remained essentially constant during the
period under consideration, starting around 1980 the remaining three stocks
became less and less conservative, with Weyer and Citicorp reaching the status
of aggressive investments around 1984. Note in Figure 3.18 how the estimated
betas for the different stocks move in a clearly correlated fashion (with the
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Fig. 3.18. Estimated betas for four stocks

exception of Mobil, that does not move at all)—a consequence of the positive
covariances specified in the matrix Wβ .

3.3.4 Hierarchical DLMs

Another general class of models for panel data and longitudinal studies is given
by dynamic hierarchical models (Gamerman and Migon (1993) and references
therein), which extend to dynamic systems the hierarchical linear models in-
troduced by Lindley and Smith (1972).

A two-stage hierarchical DLM is specified as follows

Yt = Fy,tθt + vt, vt ∼ Nm(0, Vy,t),

θt = Fθ,tλt + ǫt, ǫt ∼ NP (0, Vθ,t),

λt = Gtλt−1 + wt, wt ∼ Nk(0,Wt),

(3.41)

where the disturbance sequences (vt), (ǫt), (wt) are independent, and the ma-
trices Fy,t and Fθ,t are of full rank. Thus, in a two-stage DLM the state vector
θt is itself modeled by a DLM. A key aspect is the progressive reduction in the
dimension of the state parameters as the level becomes higher, that is P > k.

One application of hierarchical DLM is in modeling random effects in
multivariate time series. Suppose that Yt = (Y1,t, . . . , Ym,t)

′ are observations
of a variable Y for m units at time t, and Yi,t is modeled as

Yi,t = F1,tθi,t + vi,t, vi,t ∼ N (0, σ2
i,t) (3.42a)



3.3 Models for multivariate time series 135

i = 1, . . . ,m, with v1,t, . . . , vm,t independent, for any given t. In the previous
section, we illustrated SUTSE models for introducing a dependence across
the individual time series (Yi,t); however, these models require us to specify
or estimate blocks of m×m matrices in the covariance matrix W , which might
become complicated if m is large. In many applications it is in fact sufficient to
model a simpler dependence, in particular to allow individual random effects.
In its simpler form, this means assuming that

θi,t = λt + ǫi,t, ǫi,t ∼ Np(0, Σt), (3.42b)

λt = Gλt−1 + wt, wt ∼ Np(0,Wt), (3.42c)

with ǫ1,t, . . . , ǫm,t independent. In other words, for any t the cross-sectional
state vectors θ1,t, . . . , θm,t are a random sample from a Np(λt, Σt) (i.e., they
are conditionally i.i.d. given λt, with common distribution Np(λt, Σt)). Thus,
we assume the same observation equation for the individual time series Yi,t,
modeling however heterogeneity across individuals by allowing random effects
in the state processes.

Equations (3.42) can be expressed as a hierarchical DLM of the form
(3.41), letting θt = (θ′1,t, . . . , θ

′
m,t)

′, vt = (v1,t, . . . , vm,t)
′, ǫt = (ǫ′1,t, . . . , ǫ

′
m,t)

′,
Vy,t = diag(σ2

1,t, . . . , σ
2
m,t), Vθ,t = diag(Σt, . . . , Σt), Fy,t block-diagonal with

m blocks given by F1,t, and

Fθ,t =
[
Ip | · · · | Ip

]′
.

A dimensionality reduction is obtained by passing from the mp-dimensional
vectors θt to their p-dimensional common mean λt.

An example are dynamic regression models with random effects. Consider

Yi,t = x′i,tθi,t + vi,t.

Here, Yi,t are individual response variables, explained by the same regressors
X1, . . . , Xp with known value xi,t = (x1,it, . . . , xp,it)

′ for unit i at time t.
Again, random effects in the regression coefficients can be modeled by assum-
ing that, for fixed t, the coefficients for the same regressor are exchangeable,
more precisely

θ1,t, . . . , θm,t|λt iid∼ Np(λt, Σt).

A dynamics is then specified for (λt), e.g., λt = λt−1 + wt, with wt ∼
Np(0,Wt).

One way of obtaining filtering and smoothing estimates for hierarchical
DLMs is to substitute the expression for θt in the observation equation (3.41),
obtaining

Yt = Fy,tFθ,t λt + v∗t , v∗t ∼ Nm(0, Fy,tVθ,tF
′
y,t + Vy,t)

λt = Gtλt−1 + wt, wt ∼ N (0,Wt).
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This has the form of a DLM and can be estimated by the usual procedures.
In particular, for model (3.42), the observation equation reduces to

Yt = Fy,t Fθ,t λt + v∗t ,

v∗t ∼ N (0,diag(F1,tΣtF
′
1,t + σ2

y, . . . , F1,tVǫ,tF
′
1,t + σ2

y)).

Recursive formulae for filtering and prediction for hierarchical DLM are fur-
ther discussed in Gamerman and Migon (1993). Landim and Gamerman
(2000) present extensions to multivariate time series.

3.3.5 Dynamic regression

In many applications one wants to study the dependence of a variable Y on
one or more explanatory variables x, over time. Suppose that, for each time
t, we observe Y for different values of x, so that we have a time series of cross
sectional data of the kind ((Yi,t, xi), i = 1, . . . ,m, t ≥ 1) (the values x1, . . . , xm
are deterministic, and, for simplicity, we suppose that they are constant over
time). For example, in financial applications, Yi,t might be the yield at time
t of a zero coupon bond that gives one euro at time-to-maturity xi. Data of
this kind are plotted in Figure 3.19. Here the data are monthly yields from
January 1985 to December 2000, with times-to-maturity of 3, 6, 9, 12, 15, 18,
21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months 6.

Several issues arise for data of this nature. From the cross-sectional obser-
vations available at time t, we can estimate the regression function of Yt on x,
that is mt(x) = E(Yt|x), for example with the aim of interpolating y at a new
value x0. On the other hand, it is clearly of interest to study the temporal
evolution of the m time series (Yi,t : t ≥ 1). One might want to predict Yi,t+1

based on the data (Yi,1, . . . , Yi,t), by a univariate time series model; or specify
a multivariate model for the m-variate time series (Y1,t, . . . , Ym,t), t ≥ 1. How-
ever, this approach does not fully exploit all the available information, since it
ignores the dependence of the Yi’s on the covariate x. In fact, estimating the
dynamics of the regression curve is often the main objective of the analysis.

To consider both aspects of the problem, that is the cross-sectional and
the temporal nature of the data, the proposal we illustrate in this section is a
(semiparametric) dynamic regression model, written in the form of a DLM.

Suppose for simplicity that x is univariate. A flexible cross-sectional re-
gression model is obtained by considering a basis functions expansion of the
regression function at time t, of the form

mt(x) = E(Yt|x) =

k∑

j=1

βj,t hj(x) (3.43)

where hj(x) are known basis functions (e.g., powers of x:mt(x) =
∑∞
j=1 βj,tx

j ,
or trigonometric functions, or splines) and βt = (β1,t, . . . , βk,t)

′ is the vector

6 Source: http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED.txt
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Fig. 3.19. Monthly yields, 1985.01-2000.12, for times-to-maturity 3, 6, 9, 12, 15,
18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months

of the expansion coefficients. The idea is that, for k large enough (in princi-
ple, k → ∞), (3.43) can approximate any interesting shape of the regression
function mt(x); for example, any continuous function on a closed interval can
be approximated by polynomials. Models of the kind (3.43) are nevertheless
simple since they are linear in the parameters βj,t; at a given time t, we have
a regression model

Yi,t =

k∑

j=1

βj,t hj(xi) + ǫi,t, i = 1, . . . ,m,

with ǫi,t
iid∼ N (0, σ2); in matrix notation,

Yt = Fβt + ǫt, ǫt ∼ N (0, σ2Im), (3.44)

where

Yt =




Y1,t

...
Ym,t



 , F =




h1(x1) . . . hk(x1)

...
...

h1(xm) . . . hk(xm)



 βt =




β1,t

...
βk,t



 ǫt =




ǫ1,t
...
ǫk,t



 .

Thus, βt can be easily estimated, e.g., by least squares.
However, the regression curve evolves over time. Clearly, day-by-day cross-

sectional estimates do not give a complete picture of the problem. We might
have information on the dynamics of the curve that should be included in
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the analysis. Modeling the dynamics of the curve mt(x) is not simple at first,
since the curve is infinite-dimensional. However, having expressed mt(x) as in
(3.43), its temporal evolution can be described by the dynamics of the finite-
dimensional vector of coefficients (β1,t, . . . , βk,t). Suppose that the series (βt)
is Markovian, with

βt = Gβt−1 + wt, wt ∼ Nk(0,Wt).

Then, we obtain a DLM with observation equation (3.44) and state equation
as above. The state equation models the temporal evolution of the regression
function. A simple specification is to assume that the (βj,t)t≥1 are independent
random walks or AR(1) processes; or a joint model might be used for the vector
βt. A word of caution is, however, of worth; the state equation introduces
additional information, but it also constrains the dynamics of the curve. So, it
is delicate: a poor specification of the dynamics may result in an unsatisfactory
fit of the data.

3.3.6 Common factors

Sometimes it is conceptually useful to think of a number of observed series as
driven by a small number of common factors. This is a common approach for
example in economics, where one assumes that many observable series reflect
the current state of the economy, which in turn can be expressed as a lower
dimensional unobservable time series. For example, suppose that m observed
series depend linearly on p (p < m) correlated random walks. The model can
be written as

Yt = Aµt + vt, vt ∼ N (0, V ),

µt = µt−1 + wt, wt ∼ N (0,W ),
(3.45)

where A is a fixed m × p matrix of factor loadings. The model can be seen
as a dynamic generalization of factor analysis, where the common factors µt
evolve with time. Note that (3.45) is nothing else than a DLM, with θt = µt
and Ft = A. One important difference with other DLMs that we have seen in
this chapter is that here p < m, i.e., the state has a lower dimension than the
observation. In addition, the system matrix A does not have any particular
structure. As in standard factor analysis, in order to achieve identifiability of
the unknown parameters, some constraints have to be imposed. In fact, if H is
a p× p invertible matrix, defining µ̃t = Hµt and Ã = AH−1 and multiplying
the second equation in (3.45) on the left by H, we obtain the equivalent model

Yt = Ãµ̃t + vt vt ∼ N (0, V ),

µ̃t = µ̃t−1 + w̃t w̃t ∼ N (0,HWH ′).

Since A and W contain mp and 1
2p(p+ 1) parameters, respectively, but each

combination of parameters belongs to a manifold of dimension p2 (the number
of elements ofH) of equivalent models, the effective number of free parameters
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(not including those in V ) is mp − 1
2p(p − 1). One way to parametrize the

model and achieve identifiability is to set W equal to the identity matrix, and
to impose that Ai,j , the (i, j) element of A, be zero for j > i. The fact that A
is m× p, with p < m, implies that A can be written in a partitioned form as

A =

[
T
B

]
,

with T being a p×p lower triangular matrix, and B an (m−p)×p rectangular
matrix. This clearly shows that with this parametrization there are only 1

2p(p+
1) + p(m− p) = mp− 1

2p(p− 1) parameters, which is exactly the number of
free parameters of the unrestricted model. An alternative parametrization that
achieves identifiability is obtained by assuming that W is a diagonal matrix,
that Ai,i = 1 and Ai,j = 0 for j > i.

The model expressed by (3.45) is related to the notion of cointegrated
series, introduced by Granger (1981) (see also Engle and Granger; 1987). The
components of a vector time series xt are said to be cointegrated of order d, b,
written xt ∼ CI(d, b), if (i) all the components of xt are integrated of order d

(i.e., ∆dx
(i)
t is stationary for any i), and (ii) there exists a nonzero vector α

such that α′xt is integrated of order d−b < d. The components of Yt in (3.45),
as linear combinations of independent random walks (assuming for simplicity
that the components of µ0 are independent), are integrated of order 1. The
columns of A are p vectors in R

m, hence there are at least m−p other linearly
independent vectors in R

m that are orthogonal to the columns of A. For any
such α we have α′A = 0 and, therefore, α′Yt = α′vt, i.e., α′Yt is stationary—in
fact, white noise. This shows that Yt ∼ CI(1, 1). In a model where the common
factors are stochastic linear trends instead of random walks, one can see that
the observable series are CI(2, 2).

Other DLM components that are commonly used as common factors in-
clude seasonal components and cycles, especially in economic applications.
Further details on dynamic factor models can be found in Harvey (1989). For
more recent developments, see also Forni et al. (2000).

3.3.7 Multivariate ARMA models

ARMA models for multivariate, m-dimensional, observations are formally de-
fined as in the univariate case, through the recursive relation

Yt =

p∑

j=1

ΦjYt−j + ǫt +

q∑

j=1

Ψjǫt−j , (3.46)

where (ǫt) is an m-variate Gaussian white noise sequence with variance Σ
and the Φj and Ψj are m ×m matrices. Here, without loss of generality, we
have taken the mean of the process to be zero. In order for (3.46) to define a
stationary process, all the roots of the complex polynomial
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det(I − Φ1z − · · · − Φpz
p) (3.47)

must lie outside the unit disk. A DLM representation of a multivariate ARMA
process can be formally obtained by a simple generalization of the representa-
tion given earlier (Section 3.2.5) for univariate ARMA processes. Namely, in
the G matrix each φj needs to be replaced by a block containing the matrix
Φj ; similarly for the ψj in the matrix R, that have to be replaced by Ψj blocks.
Finally, all the occurrences of a “one” in F , G, and R must be replaced by the
identity matrix of order m, and all the occurrences of a “zero” with a block of
zeroes of order m×m. For example, let us consider the bivariate ARMA(2,1)
process

Yt = Φ1Yt−1 + Φ2Yt−2 + ǫt + Ψ1ǫt−1, ǫt ∼ N (0, Σ), (3.48)

with

Ψ1 =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
, Φi =

[
Φ11,i Φ12,i

Φ21,i Φ22,i

]
, i = 1, 2. (3.49)

Then the system and observation matrices needed to define the DLM repre-
sentation of (3.48) are the following:

F =

[
1 0 0 0
0 1 0 0

]
,

G =





Φ11,1 Φ12,1 1 0
Φ21,1 Φ22,1 0 1
Φ11,2 Φ12,2 0 0
Φ21,2 Φ22,2 0 0



 ,

R =





1 0
0 1
Ψ11 Ψ12

Ψ21 Ψ22



 , W = RΣR′.

(3.50)

In R, the function dlmModARMA can be used to create a DLM representation of
an ARMA model also in the multivariate case. The contributed package dse1

also provides tools for the analysis of multivariate ARMA models.
For a detailed treatment of multivariate ARMA models the reader can

consult Reinsel (1997) and Lütkepohl (2005).

In many applications, in particular in econometrics, ARMA models with
no moving average part are often considered, as they are more easily inter-
pretable. Multivariate AR models are commonly called vector autoregressive
(VAR) models. In econometrics, VAR models are widely used both for fore-
casting and for detecting relationships between macroeconomic variables or
groups of variables. Suppose we partition Yt into a group of k variables and a
group of m− k variables, Xt and Zt say, so that Y ′

t = (X ′
t, Z

′
t). It is often of
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interest to study causal relationships between (Xt) and (Zt). There are several
ways of rigorously defining this problem. One possibility is to appeal to the
notion of Granger causality, which is based on assessing the improvement in
the forecasting of one variable produced by the inclusion of the other in the
information set upon which the forecast is based. More precisely, we say that
(Xt) is Granger-causal for (Zt) if for all t

Var
(
E(Zt+h|z1:t)

)
> Var

(
E(Zt+h|z1:t, x1:t)

)

for some h ≥ 1.
Instantaneous causality is another notion of causal relationship between

two groups of variables that is often used in macroeconometric analysis. We
say that there is instantaneous causality between (Xt) and (Zt) if for all t

Var
(
E(Zt+1|y1:t)

)
> Var

(
E(Zt+1|y1:t, xt+1)

)
.

Yet another way of studying relationships among variables is the approach
based on impulse response analysis. Loosely speaking, and without entering
in the details, in this type of analysis one tries to understand how one vari-
able responds to a shock in another variable in a system that includes other
variables as well.

It turns out that also the class of VAR models is too large and the interpre-
tation of a particular model may not be easy. In particular, impulse responses
are generally not unique. To overcome this issue, structural restrictions can
be imposed on VAR models, leading to the so-called structural VARs; see,
e.g., Amisano and Giannini (1997). VARs and structural VARs provide also
an appropriate setting to apply the notion of cointegration (see p. 139), which
has received a lot of attention from econometricians in the last twenty years.

We will not treat VAR models or cointegration in this book; the interested
reader can consult Lütkepohl (2005), Canova (2007), or Pfaff (2008a), the
latter showing also implementations in R. The contributed package vars (Pfaff;
2008b) can be used for the analysis in R of VAR models.

To conclude this section, let us point out that macroeconomic analysis is
an area where expert opinion, in the form of informative prior distributions
for unknown model parameters, is often available and can be fruitfully incor-
porated into a model to improve forecasts and inference in general. However,
specifying in a meaningful way a prior for the many parameters of a VAR
model may not be an easy task, and several simplified ways of doing so have
been suggested, starting with the so-called “Minnesota prior” (Litterman;
1986; Doan et al.; 1984). There is now a vast literature on Bayesian VAR’s
and we refer the reader to Canova (2007) and references therein. In R, the
contributed package MSBVAR (Brandt; 2008) can be used for the analysis of
Bayesian VAR models.
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Problems

3.1. Simulate patterns of the random walk-plus-noise model for different val-
ues of V and W .

3.2. Show that, for the local level model, limt→∞ Ct = KV , whereK is defined
by (3.8).

3.3. Let (Yt, t = 1, 2, . . .) be described by a random walk plus noise model.
Show that the first differences Zt = Yt − Yt−1 are stationary and have the
same autocorrelation function of a MA(1) model.

3.4. Simulate patterns of the linear growth model for different values of V
and W1,W2.

3.5. Let (Yt, t = 1, 2, . . .) be described by a linear growth model. Show that
the second differences Zt = Yt − 2Yt−1 + Yt−2 are stationary and have the
same autocorrelation function of a MA(2) model.

3.6. Show that the forecast function for the polynomial model of order n is
polynomial of order n− 1.

3.7. Verify that the second differences of (Yt) for a linear growth model can
be written in terms of the innovations as in (3.12).

3.8. Consider the data studied in Section 3.2.6. Estimate a global trend model,
yt = µ0 + δt + ǫt. Look at the one-step-ahead forecast residuals, and make
your comments. Then, compare with the integrated random walk and the
linear growth model for these data.

3.9. Show that a Fourier form seasonal DLM has a periodic forecast function,
even when W is a general variance matrix.

3.10. Prove that (3.31) holds.

3.11. Simulate paths of a stationary bivariate VAR(1) process. Compare with
paths of a nonstationary VAR(1) process.




