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Models with unknown parameters

In the previous chapters we presented some basic DLMs for time series anal-
ysis, assuming that the system matrices Ft, Gt, Vt, and Wt were known. This
was done to more easily study their behavior and general properties. In fact,
in time series applications the matrices in the DLM are very rarely completely
known. In this chapter we let the model matrices depend on a vector of un-
known parameters, ψ say. The unknown parameters are usually constant over
time, but we also give some examples where they may have a temporal evo-
lution. Anyway, the dynamics of ψt will be such as to maintain the linear,
Gaussian structure of DLMs.

In a classical framework one typically starts by estimating ψ, usually by
maximum likelihood. If the researcher is only interested in the unknown pa-
rameters, the analysis terminates here; if, on the other hand, he is interested
in smoothing or forecasting the values of the observed series or those of the
state vectors, the customary way to proceed is to use the estimated value of ψ
as if it were a known constant, and apply the relevant techniques of Chapter 2
for forecasting or smoothing.

From a Bayesian standpoint, unknown parameters are instead random
quantities, as we discussed in Chapter 1: therefore, in the context of DLMs,
the posterior distribution of interest is the joint conditional distribution of
the state vectors—or of future measurements—and the unknown parameter
ψ, given the observations. As we shall see, Bayesian inference, even if simple
in principle, involves computations that are usually not analytically manage-
able; however, Markov chain Monte Carlo and modern sequential Monte Carlo
methods can be quite efficient in providing an approximation of the posterior
distributions of interest.

In Section 4.1 we discuss maximum likelihood estimation of an unknown
parameter occurring in the specification of a DLM, while the rest of the chap-
ter is devoted to Bayesian inference.

©  Springer Science + Business Media, LLC 2009
143G. Petris et al., Dynamic Linear Models with R, Use R, DOI: 10.1007/b135794_4,



144 4 Models with unknown parameters

4.1 Maximum likelihood estimation

Suppose that we have n random vectors, Y1, . . . , Yn, whose distribution de-
pends on an unknown parameter ψ. We will denote the joint density of the
observations for a particular value of the parameter, by p(y1, . . . , yn;ψ). The
likelihood function is defined to be, up to a constant factor, the probability
density of the observed data read as a function of ψ, i.e., denoting the like-
lihood by L, we can write L(ψ) = const. · p(y1, . . . , yn;ψ). For a DLM it is
convenient to write the joint density of the observations in the form

p(y1, . . . , yn;ψ) =
n∏

t=1

p(yt|y1:t−1;ψ), (4.1)

where p(yt|y1:t−1;ψ) is the conditional density of yt given the data up to time
t− 1, assuming that ψ is the value of the unknown parameter. We know from
Chapter 2 that the terms occurring in the RHS of (4.1) are Gaussian densities
with mean ft and variance Qt. Therefore we can write the loglikelihood as

ℓ(ψ) = −1

2

n∑

t=1

log |Qt| −
1

2

n∑

t=1

(yt − ft)
′Q−1

t (yt − ft), (4.2)

where the ft and the Qt depend implicitly on ψ. The expression (4.2) can be
numerically maximized to obtain the MLE of ψ:

ψ̂ = argmax
ψ

ℓ(ψ). (4.3)

Denote by H the Hessian matrix of −ℓ(ψ), evaluated at ψ = ψ̂. The matrix

H−1 provides an estimate of the variance of the MLE, Var(ψ̂). Conditions
for consistency as well as asymptotic normality of the MLE can be found in
Caines (1988) and Hannan and Deistler (1988). See also Shumway and Stoffer
(2000) for an introduction. For most of the commonly used DLM, however,
the usual consistency and asymptotic normality properties of MLE hold.

A word of caution about numerical optimization is in order. The likeli-
hood function for a DLM may present many local maxima. This implies that
starting the optimization routine from different starting points may lead to
different maxima. It is therefore a good idea to start the optimizer several
times from different starting values and compare the corresponding maxima.
A rather flat likelihood is another problem that one may face when looking
for a MLE. In this case the optimizer, starting from different initial values,
may end up at very different points corresponding to almost the same value
of the likelihood. The estimated variance of the MLE will typically be very
large. This is a signal that the model is not well identifiable. The solution is
usually to simplify the model, eliminating some of the parameters, especially
when one is interested in making inference and interpreting the parameters
themselves. On the other hand, if smoothing or forecasting is the focus, then
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sometimes even a model that is poorly identified in terms of its parameters
may produce good results.

R provides an extremely powerful optimizer with the function optim, which
is used inside the function dlmMLE in package dlm. In the optimization world
it is customary to minimize functions, and optim is no exception: by default it
seeks a minimum. Statisticians too, when looking for an MLE, tend to think
in terms of minimizing the negative loglikelihood. In line with this point of
view, the function dlmLL returns the negative loglikelihood of a specified DLM
for a given data set. In terms of the parameter ψ occurring in the definition
of the DLM of interest, one can think of minimizing the compound function
obtained in two steps by building a DLM first, and then evaluating its negative
loglikelihood, as a function of the matrices defining it. A suggestive graphical
representation is the following:

ψ
build
=⇒ DLM

loglik.
=⇒ −ℓ(ψ).

That is exactly what dlmMLE does: it takes a user-defined function build that
creates a DLM, defines a new function by composing it with dlmLL, and passes
the result to optim for the actual minimization. Consider, for example, the
annual precipitation data for Lake Superior (see page 91). By plotting the
data, it seems that a polynomial model of order one can provide an adequate
description of the phenomenon. The code below shows how to find the MLE
of V and W .

R code

> y <- ts(read.table("Datasets/lakeSuperior.dat",

2 + skip = 3))[, 2], start = c(1900, 1)

> build <- function(parm) {
4 + dlmModPoly(order = 1, dV = exp(parm[1]), dW = exp(parm[2]))

+ }
6 > fit <- dlmMLE(y, rep(0, 2), build)

> fit$convergence

8 [1] 0

> unlist(build(fit$par)[c("V", "W")])

10 V W

9.4654447 0.1211534

We have parametrized the two unknown variances in terms of their log, so
as to avoid problems in case the optimizer went on to examine negative val-
ues of the parameters. The value returned by dlmMLE is the list returned by
the call to optim. In particular, the component convergenge needs always
to be checked: a nonzero value signals that convergence to a minimum has
not been achieved. dlmMLE has a ... argument that can be used to provide
additional named arguments to optim. For example, a call to optim including
the argument hessian=TRUE forces optim to return a numerically evaluated
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Hessian at the minimum. This can be used to estimate standard errors of the
components of the MLE, or more generally its estimated variance matrix, as
detailed above. In the previous example we parametrized the model in terms
of ψ = (log(V ), log(W )), so that standard errors estimated from the Hessian
refer to the MLE of these parameters. In order to get standard errors for the
MLE of V and W , one can apply the delta method. Let us recall the gen-
eral multivariate form of the delta method. Suppose that ψ is h-dimensional,
and g : R

h → R
k is a function that has continuous first derivatives. Write

g(ψ) = (g1(ψ), . . . , gk(ψ)) for any ψ = (ψ1, . . . , ψh) ∈ R
h, and define the

derivative of g to be the k by h matrix

Dg =





∂g1
∂ψ1

. . .
∂g1
∂ψh

. . . . . . . . . . . .
∂gk
∂ψ1

. . .
∂gk
∂ψh




, (4.4)

that is, the ith row of Dg is the gradient of gi. If Σ̂ is the estimated variance
matrix of the MLE ψ̂, then the MLE of g(ψ) is g(ψ̂), and its estimated variance

is Dg(ψ̂)Σ̂Dg(ψ̂)′. In the example, g(ψ) = (exp(ψ1), exp(ψ2)), so that

Dg(ψ) =

[
exp(ψ1) 0

0 exp(ψ2)

]
. (4.5)

We can use the Hessian of the negative loglikelihood at the minimum and the
delta method to compute in R standard errors of the estimated variances, as
the code below shows.

R code

> fit <- dlmMLE(y, rep(0, 2), build, hessian = TRUE)

2 > avarLog <- solve(fit$hessian)

> avar <- diag(exp(fit$par)) %*% avarLog %*%

4 + diag(exp(fit$par)) # Delta method

> sqrt(diag(avar)) # estimated standard errors

6 [1] 1.5059107 0.1032439

As an alternative to using the delta method, one can numerically compute the
Hessian of the loglikelihood, expressed as a function of the new parameters
g(ψ), at g(ψ̂). The recommended package nlme provides the function fdHess,
which we put to use in the following piece of code.

R code

> avar1 <- solve(fdHess(exp(fit$par), function(x)

2 + dlmLL(y, build(log(x))))$Hessian)

> sqrt(diag(avar1))

4 [1] 1.5059616 0.1032148 # estimated standard errors
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In this example one could parametrize the model in terms of V and W , and
then use the Hessian returned by dlmMLE to compute the estimated standard
errors directly. In this case, however, one needs to be careful about the natural
restriction of the parameter space, and provide a lower bound for the two
variances. Note that the default optimization method, L-BFGS-B, is the only
method that accepts restrictions on the parameter space, expressed as bounds
on the components of the parameter. In the following code, the lower bound
10−6 for V reflects the fact that the functions in dlm require the matrix V
to be nonsingular. On the scale of the data, however, 10−6 can be considered
zero for all practical purposes.

R code

> build <- function(parm) {
2 + dlmModPoly(order = 1, dV = parm[1], dW = parm[2])

+ }
4 > fit <- dlmMLE(y, rep(0.23, 2), build, lower = c(1e-6, 0),

+ hessian = T)

6 > fit$convergence

[1] 0

8 > unlist(build(fit$par)[c("V", "W")])

V W

10 9.4654065 0.1211562

> avar <- solve(fit$hessian)

12 > sqrt(diag(avar))

[1] 1.5059015 0.1032355

To conclude, let us mention the function StructTS, in base R. This func-
tion can be used to find MLE for the variances occurring in some particular
univariate DLM. The argument type selects the model to use. The available
models are the first order polynomial model (type="level"), the second or-
der polynomial model (type="trend"), and a second order polynomial model
plus a seasonal component (type="BSM"). Standard errors are not returned
by StructTS, nor are they easy to compute from its output.

R code

> StructTS(y, "level")

2

Call:

4 StructTS(x = y, type = "level")

6 Variances:

level epsilon

8 0.1212 9.4654
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4.2 Bayesian inference

The common practice of plugging the MLE ψ̂ in the filtering and smooth-
ing recursions suffers from the difficulties in taking properly into account the
uncertainty about ψ. The Bayesian approach offers a more consistent formu-
lation of the problem. The unknown parameters ψ are regarded as a random
vector. The general hypotheses of state space models for the processes (Yt)
and (θt) (assumptions (A.1) and (A.2) on page 40) are assumed to hold con-
ditionally on the parameters ψ. Prior knowledge about ψ is expressed through
a probability law π(ψ). Thus, for any n ≥ 1, we assume that

(θ0, θ1, . . . , θn, Y1, . . . , Yn, ψ) ∼ π(θ0|ψ)π(ψ)
n∏

t=1

π(yt|θt, ψ)π(θt|θt−1, ψ)

(4.6)
(compare with (2.3)).

Given the data y1:t, inference on the unknown state θs at time s and on
the parameters is solved by computing their joint posterior distribution

π(θs, ψ|y1:t) = π(θs|ψ, y1:t)π(ψ|y1:t), (4.7)

where, as usual, one might be interested in s = t, in filtering problems; s > t,
for state prediction; or s < t, for smoothing. The marginal conditional density
of θs is obtained from (4.7); for example, the filtering density is given by

π(θt|y1:t) =

∫
π(θt|ψ, y1:t)π(ψ|y1:t)dψ.

Here, the recursion formulae for filtering, given in Chapter 2, can be used to
compute the conditional density π(θt|ψ, y1:t); however, this is now averaged
with respect to the posterior distribution of ψ, given the data.

Often, one is interested in reconstructing all the unknown state history up
to time t; inference on θ0:t and ψ, given the data y1:t, is expressed through
their joint posterior density

π(θ0:t, ψ|y1:t) = π(θ0:t|ψ, y1:t)π(ψ|y1:t). (4.8)

In principle, the posterior density (4.8) is obtained from the Bayes rule. In
some simple models and using conjugate priors, it can be computed in closed
form; examples are given in the following section. More often, computations
are analytically intractable. However, MCMC methods and sequential Monte
Carlo algorithms provide quite efficient tools for approximating the posterior
distributions of interest, and this is one reason for the enormous impulse en-
joyed by Bayesian inference for state space models in recent years.

Posterior distribution. MCMC and, in particular, Gibbs sampling algo-
rithms are widely used to approximate the joint posterior π(θ0:t, ψ|y1:t). Gibbs
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sampling from π requires us to iteratively simulate from the full conditional
distributions π(θ0:t|ψ, y1:t) and π(ψ|θ0:t, y1:t). Efficient algorithms for sam-
pling from the full conditional π(θ0:t|ψ, y1:t) have been developed, and will
be presented in Section 4.4.1. Furthermore, exploiting the conditional inde-
pendence assumptions of DLMs, the full conditional density π(ψ|θ0:t, y1:t)
is usually easier to compute than π(ψ|y1:t). Clearly, this full conditional is
problem-specific, but we will provide several examples in the next sections.

We can thus implement Gibbs sampling algorithms to approximate π.
Samples from π(θ0:t, ψ|y1:t) can also be used for approximating the filtering
density π(θt|y1:t) and the marginal smoothing densities π(θs|y1:t), s < t. As
we shall see, they also allow us to simulate samples from the predictive dis-
tribution of the states and observables, π(θt+1, yt+1|y1:t). Thus, this approach
solves at the same time the filtering, smoothing, and forecasting problems for
a DLM with unknown parameters.

Filtering and on-line forecasting. The shortcoming of the MCMC proce-
dures described above is that they are not designed for recursive or on-line
inference. When a new observation yt+1 is available, the distribution of inter-
est becomes π(θ0:t+1, ψ|y1:t+1) and one has to run a new MCMC all over again
to sample from it. This is computationally inefficient, especially in applica-
tions that require an on-line type of analysis, in which new data arrive rather
frequently. As discussed in Chapter 2, one of the attractive properties of DLM
is the recursive nature of the filter formulae, which allows us to update the
inference efficiently as new data become available. In the case of no unknown
parameters in the DLM, one could compute π(θt+1|y1:t+1) from π(θt|y1:t) by
the estimation-error correction formulae given by the Kalman filter, without
doing all the computations again. Analogously, when there are unknown pa-
rameters ψ, one would like to exploit the samples generated from π(θ0:t, ψ|y1:t)
in simulating from π(θ0:t+1, ψ|y1:t+1), without running the MCMC all over
again. Modern sequential Monte Carlo techniques, in particular the family of
algorithms that go under the name of particle filters, can be used to this aim
and allow efficient on-line analysis and simulation-based sequential updating
of the posterior distribution of states and unknown parameters. A description
of these techniques is postponed until Chapter 5.

4.3 Conjugate Bayesian inference

In some simple cases, Bayesian inference can be carried out in closed form
using conjugate priors. We illustrate an example here.

Even in simple structural models such as those presented in Chapter 3,
where the system matrices Ft and Gt are known, very rarely are the covariance
matrices Vt and Wt completely known. Thus, a basic problem is estimating
Vt and Wt. Here we consider a simple case where Vt and Wt are known up to
a common scale factor; that is, Vt = σ2Ṽt and Wt = σ2W̃t, with σ2 unknown.
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This specification of the covariance matrices has been discussed in Section
1.5 of Chapter 1 for the static linear regression model. A classical example
is Vt = σ2Im; an interesting way of specifying W̃t is discussed later, using
discount factors.

4.3.1 Unknown covariance matrices: conjugate inference

Let ((Yt, θt) : t = 1, 2, . . .) be described by a DLM with

Vt = σ2Ṽt, Wt = σ2W̃t, C0 = σ2C̃0. (4.9)

Here all the matrices Ṽt, W̃t, as well as C̃0 and all the Ft and Gt, are assumed
to be known. The scale parameter σ2, on the other hand, is unknown. As usual
in Bayesian inference, it is convenient to work with its inverse φ = 1/σ2. The
uncertainty, therefore, is all in the state vectors and in the parameter φ. The
DLM provides the conditional probability law of (Yt, θt) given φ; in particular
the model assumes, for any t ≥ 1,

Yt|θt, φ ∼ Nm(Ftθt, φ
−1Ṽt)

θt|θt−1, φ ∼ Np(Gtθt−1, φ
−1W̃t).

As the prior for (φ, θ0), a convenient choice is a conjugate Normal-Gamma
prior (see Appendix A), that is

φ ∼ G(α0, β0), θ0|φ ∼ N (m0, φ
−1C̃0),

denoted as (θ0, φ) ∼ NG(m0, C̃0, α0, β0). Then we have the following recursive
formulae for filtering. Note the analogy with the recursive formulae valid for
a DLM with no unknown parameters.

Proposition 4.1. For the DLM described above, if

(θt−1, φ)|y1:t−1 ∼ NG(mt−1, C̃t−1, αt−1, βt−1)

where t ≥ 1, then:

(i) The one-step-ahead predictive density of (θt, φ)|y1:t−1 is Normal-Gamma
with parameters (at, R̃t, αt−1, βt−1), where

at = Gtmt−1, R̃t = GtC̃t−1G
′
t + W̃t; (4.10)

(ii)The one-step-ahead predictive density of Yt|y1:t−1 is Student-t, with pa-
rameters (ft, Q̃tβt−1/αt−1, 2αt−1), where

ft = Ftat, Q̃t = FtR̃tF
′
t + Ṽt; (4.11)
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(iii) The filtering density of (θt, φ|y1:t) is Normal-Gamma, with parameters

mt = at + R̃tFtQ̃
−1(yt − ft)

C̃t = R̃t − R̃tF
′
tQ̃

−1
t R̃′

t,

αt = αt−1 +
m

2
,

βt = βt−1 +
1

2
(yt − ft)

′Q̃−1
t (yt − ft).

(4.12)

Proof. (i) Suppose that θt−1, φ|y1:t−1 ∼ NG(mt−1, C̃t−1, αt−1, βt−1) (this is
true for t = 1). In particular, this implies that φ|y1:t−1 ∼ G(αt−1, βt−1).
By (i) of Proposition 2.2, we have that

θt|φ, y1:t−1 ∼ Np(at, φ
−1R̃t)

with at and R̃t given by (4.10). Therefore (θt, φ)|y1:t−1 ∼ NG(at, R̃t, αt, βt).
(ii) It also follows, from part (ii) of Proposition 2.2, that

Yt|φ, y1:t−1 ∼ Nm(ft, φ
−1Q̃t)

where ft and Q̃t are given by (4.11). Thus we obtain that (Yt, φ)|y1:t−1 ∼
NG(ft, Q̃t, αt−1, βt−1); the corresponding marginal density of Yt|y1:t−1 is
Student-t, as given in (ii).
(iii) For a new observation Yt, the likelihood is

Yt|θt, φ ∼ Nm(Ftθt, φ
−1Ṽt).

The theory of linear regression with a Normal-Gamma prior discussed in
Chapter 1 (page 21; use (1.11) and (1.12)) applies, and leads to the con-
clusion that (θt, φ) given y1:t has again a NG(mt, C̃t, αt, βt) distribution, with
parameters defined by (4.12). ⊓⊔

By the properties of the Student-t distribution we have that the one-step-
ahead forecast of Yt given y1:t−1 is E(Yt|y1:t−1) = ft, with covariance matrix
Var(Yt|y1:t−1) = Q̃t βt−1/(αt−1 − 1).

From (iii), the marginal filtering density of σ2 = φ−1 given y1:t is Inverse-
Gamma, with parameters (αt, βt), so that, for αt > 2,

E(σ2|y1:t) =
βt

αt − 1
, Var(σ2|y1:t) =

β2
t

(αt − 1)2(αt − 2)
.

The marginal filtering density of the states is Student-t:

θt|y1:t ∼ T (mt, C̃t βt/αt, 2αt),

with
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E(θt|y1:t) = mt, Var(θt|y1:t) =
βt

αt − 1
C̃t. (4.13)

Were σ2 known, the Kalman filter would give the same point estimate,
E(θt|y1:t) = mt, with covariance matrix Var(θt|y1:t) = σ2C̃t. Instead, the
unknown value of σ2 is replaced in (4.13) by its conditional expectation
βt/(αt − 1). The larger uncertainty is reflected in a filtering density with
thicker tails than the Gaussian density (see Exercise 4.2).

As far as smoothing is concerned, note that

(θT , φ|y1:T ) ∼ NG(sT , S̃T , αT , βT ), (4.14)

with sT = mT and S̃T = C̃T , and write

π(θt, φ|y1:T ) = π(θt|φ, y1:T )π(φ|y1:T ), t = 0, . . . , T. (4.15)

Conditional on φ, the Normal theory of Chapter 1 applies, showing that (θt, φ),
conditional on y1:T has a Normal-Gamma distribution. The parameters can
be computed using recursive formulae that are the analog of those developed
for the Normal case. Namely, for t = T − 1, . . . , 0, let

st = mt + C̃tG
′
t+1R̃

−1
t+1(st+1 − at+1),

S̃t = C̃t − C̃tG
′
t+1R̃

−1
t+1(R̃t+1 − S̃t+1)R̃

−1
t+1Gt+1C̃t.

Then
θt, φ|y1:T ∼ NG(st, S̃t, αT , βT ). (4.16)

4.3.2 Specification of Wt by discount factors

The Bayesian conjugate analysis discussed in the previous section applies if the
matrices Ṽt, W̃t and C̃0 are known, which is a restrictive assumption. However,
an interesting case is when Ṽt = Im and W̃t is specified by a technique that is
known as discount factor. We give here an informal explanation of discount-
factors; for an in-depth discussion, see West and Harrison (1997, Section 6.3).

As often underlined (see, e.g., Chapter 2, pages 57-58), the structure and
magnitude of the state covariance matricesWt has a crucial role in determining
the role of past observations in state estimation and forecasting. Think of
Wt as diagonal, for simplicity. Large values in the diagonal of Wt imply high
uncertainty in the state evolution, so that a lot of sample information is lost in
passing from θt−1 to θt: the past observations y1:t−1 give information about
θt−1, which, however, becomes of little relevance in forecasting θt; in fact,
the current observation yt is what mainly determines the estimate of θt|y1:t.
In the Kalman filter recursions, the uncertainty about θt−1 given y1:t−1 is
summarized in the conditional covariance matrix Var(θt−1|y1:t−1) = Ct−1.
Moving from θt−1 to θt via the state equation θt = Gtθt−1+wt, the uncertainty
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increases and we have Var(θt|y1:t−1) = Rt = G′
tCt−1Gt+Wt. Thus, if Wt = 0,

i.e., there is no error in the state equation, we have Rt = Var(Gtθt−1|y1:t−1) =
Pt, say. Otherwise, Pt is increased in Rt = Pt+Wt. In this sense, Wt expresses
the loss of information in passing from θt−1 to θt due to the stochastic error
component in the state evolution, the loss depending on the magnitude of Wt

with respect to Pt. Therefore, one can think of expressing Wt as a proportion
of Pt:

Wt =
1 − δ

δ
Pt

where δ ∈ (0, 1]. It follows that Rt = 1/δ Pt, with 1/δ > 1. The pa-
rameter δ is called discount factor since it “discounts” the matrix Pt that
one would have with a deterministic state evolution into the matrix Rt.
If δ = 1, Wt = 0 and we have no loss of information from θt−1 to θt:
Var(θt|y1:t) = Var(Gtθt−1|y1:t−1) = Pt. For δ < 1, for example δ = 0.8,
we have Var(θt|y1:t) = (1/0.8) Var(Gtθt−1|y1:t−1) = 1.25Pt, showing bigger
uncertainty. In practice, the value of the discount factor is usually fixed be-
tween 0.9 and 0.99, or it is chosen by model selection diagnostics, e.g., looking
at the predictive performance of the model for different values of δ.

The discount factor specification may be used with conjugate priors, that
is one can let

W̃t =
1 − δ

δ
G′
tC̃t−1Gt (4.17)

in (4.9). Given C̃0 and Ṽt (e.g., Ṽt = Im), the value of W̃t can be recursively
computed for every t. The evolution covariance matrix is not time-invariant;
however, its dynamics is completely determined once C̃0, Ṽt and the system
matrices Ft and Gt are given. Further refinements consider different discount
factors δi for the different components of the state vector.

Example. As a simple illustration, let us consider again the data on the
annual precipitations at Lake Superior, which we modeled as a random walk
plus noise (see page 145). In Section 4.1, the unknown variances Vt = σ2 and
Wt = W were estimated by maximum likelihood. Here, we consider Bayesian
conjugate inference with W̃t specified by the discount factor.

Note that the quantities at, ft,mt, as well as C̃t and R̃t, can be computed
by the Kalman filter for a DLM with known covariance matrices C̃0 and Ṽ (as
in (4.9), with σ2 = 1) and W̃t. In fact, the evolution variance W̃t is known for
t = 1, while it is assigned sequentially according to (4.17) for t > 1. That is,
for each t = 2, 3, . . ., one has to compute W̃t from the results obtained at t−1,
and then use the Kalman filter recursions (4.10)-(4.12). These steps can be
easily implemented in R, with a slight modification of the function dlmFilter.
For the user’s convenience, we provide them in the function dlmFilterDF,
available from the book website. The arguments of dlmFilterDF are the data
y, the model mod (where Ft, Gt and Vt are assumed to be time-invariant) and
the discount factor DF; the function returns, as for dlmFilter, the values mt,
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at, ft and the SVDs of C̃t and R̃t for any t. In addition, it returns the SVDs
of the matrices Wt obtained using the discount factor.

The parameters of the filtering distribution for the unknown precision φ
can be computed from (4.12), which gives

αt = α0 + t
2

βt = β0 + 1
2

∑t
i=1(yi − fi)

2Q̃−1
i = β0 + 1

2

∑t
i=1 ẽ

2
i ,

where the standardized innovations ẽt and the standard deviation Q̃
1/2
t can

be obtained with a call to the residuals function. Finally, one can compute

Qt = Var(Yt|y1:t−1) = Q̃t
βt−1

αt−1 − 1

Ct = Var(θt|y1:t) = C̃t
βt

αt − 1
.

As for smoothing, we can compute st and S̃t with a call to the dlmSmooth

function. Note that we need, as inputs, the matrices Wt obtained as output
of dlmFilterDF. Finally, we obtain

St = Var(θt|y1:T ) = S̃t
βT

αT − 1
.

For illustration with the Lake Superior data, we choose the prior hyperparam-
eters m0 = 0, C̃0 = 107, α0 = 2, β0 = 20, so that E(σ2) = β0/(α0 − 1) = 20,
and a discount factor δ = 0.9. Figure 4.1 shows the filtering and smoothing
estimates of the level, mt and st, respectively, with 90% probability intervals
(see Problem 4.2), as well as the one-step-ahead point forecasts ft, with 90%
probability intervals.

R code

> y <- ts(read.table("Datasets/lakeSuperior.dat",

2 + skip = 3)[, 2], start = c(1900, 1))

> mod <- dlmModPoly(1, dV = 1)

4 > modFilt <- dlmFilterDF(y, mod, DF = 0.9)

> beta0 <- 20; alpha0 <- 2

6 > ## Filtering estimates

> out <- residuals(modFilt)

8 > beta <- beta0 + cumsum(out$res^2) / 2

> alpha <- alpha0 + (1 : length(y)) / 2

10 > Ctilde <- unlist(dlmSvd2var(modFilt$U.C, modFilt$D.C))[-1]

> prob <- 0.95

12 > tt <- qt(prob, df = 2 * alpha)

> lower <- dropFirst(modFilt$m) - tt * sqrt(Ctilde * beta /

14 + alpha)

> upper <- dropFirst(modFilt$m) + tt * sqrt(Ctilde * beta /
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Fig. 4.1. Annual precipitation at Lake Superior (gray), filtering and smoothing
level estimates, and one-step-ahead forecasts

16 + alpha)

> plot(y, ylab = "Filtering level estimates", type = "o",

18 + ylim = c(18, 40), col = "darkgray")

> lines(dropFirst(modFilt$m), type = "o")

20 > lines(lower, lty = 2, lwd = 2)

> lines(upper, lty = 2, lwd = 2)

22 > ## One-step-ahead forecasts
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> sigma2 <- c(beta0 / (alpha0-1), beta / (alpha-1))

24 > Qt <- out$sd^2 * sigma2[-length(sigma2)]

> alpha0T = c(alpha0,alpha)

26 > tt <- qt(prob, df = 2 * alpha0T[-length(alpha0T)])

> parf <- c(beta0 / alpha0, beta / alpha)

28 > parf <- parf[-length(parf)] * out$sd^2

> lower <- dropFirst(modFilt$f) - tt * sqrt(parf)

30 > upper <- dropFirst(modFilt$f) + tt * sqrt(parf)

> plot(y, ylab = "One-step-ahead forecasts", type = "o",

32 + ylim = c(20, 40), col = "darkgray")

> lines(window(modFilt$f, start = 1902), type = "o")

34 > lines(lower, lty = 2, lwd = 2)

> lines(upper, lty = 2, lwd = 2)

36 > ## Smoothing estimates

> modFilt$mod$JW <- matrix(1)

38 > X <- unlist(dlmSvd2var(modFilt$U.W, modFilt$D.W))[-1]

> modFilt$mod$X <- matrix(X)

40 > modSmooth <- dlmSmooth(modFilt)

> Stildelist <- dlmSvd2var(modSmooth$U.S, modSmooth$D.S)

42 > TT <- length(y)

> pars <- unlist(Stildelist) * (beta[TT] / alpha[TT])

44 > tt <- qt(prob, df = 2 * alpha[TT])

> plot(y, ylab = "Smoothing level estimates",

46 + type = "o", ylim = c(20, 40), col = "darkgray")

> lines(dropFirst(modSmooth$s), type = "o")

48 > lines(dropFirst(modSmooth$s - tt * sqrt(pars)),

+ lty = 3, lwd = 2)

50 > lines(dropFirst(modSmooth$s + tt * sqrt(pars)),

+ lty = 3, lwd = 2)

An important point is choosing the value of the discount factor δ, which
determines the signal-to-noise ratio. In practice, one usually tries several val-
ues of δ, comparing the predictive performance of the corresponding models.
Figure 4.2 shows the one-step-ahead point forecasts for the time window 1960-
85, for different choices of δ (δ = 1, which corresponds to the static model
with Wt = 0 and θt = θ0; δ = 0.9; δ = 0.8 and δ = 0.3, a quite small
value). The degree of adaptation to new data increases as δ becomes smaller.
For δ = 0.3 the forecasts ft+1 = E(Yt+1|y1:t) are mainly determined by the
current observation yt. For δ closer to one, smoother forecasts are obtained.

Finally, Figure 4.3 shows the sequence of point estimates E(σ2|y1:t) =
βt/(αt−1) of the observation variance, for t = 1, 2, . . . , 87; the final estimates
at t = 87 are reported in the table below.

discount factor 1.0 0.9 0.8 0.7
E(σ2|y1:87) 12.0010 9.6397 8.9396 8.3601
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Fig. 4.2. Annual precipitation at Lake Superior (gray) and one-step-ahead forecasts,
for different values of the discount factor (DF)
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Fig. 4.3. Posterior expectation E(σ2|y1:t), for different values of the discount factor
(DF)

Smaller values of δ imply larger evolution variance; correspondingly, a smaller
observation variance is expected. Note that, for δ = 0.9, the Bayesian estimate
E(σ2|y1:87) = 9.6397 is close to the MLE σ̂2 = 9.4654, obtained on page 145.

The table below shows some measures of forecast accuracy for the four
different choices of the discount factor, which suggest a better predictive per-
formance for δ = 0.9.
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discount factor MAPE MAD MSE
1.0 0.0977 3.0168 21.5395
0.9 0.0946 2.8568 19.9237
0.8 0.0954 2.8706 20.2896
0.3 0.1136 3.4229 25.1182

4.3.3 A discount factor model for time-varying Vt

In the DLM (4.9), the unknown precision factor φ is assumed to be constant
over time. Since, for simplicity, the components Ṽt are often taken as time-
invariant too, this implies a constant observation covariance matrix, which is
a restrictive assumption in many applications. Models for time varying Vt will
be discussed in later sections. Here, we apply the technique of discount factors
for introducing a fairly simple temporal evolution for the precision φ in (4.9)
(see West and Harrison; 1997, Section 10.8).

Consider the DLM described in Section 4.3.1, and suppose again that at
time t− 1

φt−1|y1:t−1 ∼ G(αt−1, βt−1).

However, let now φ evolve from time t− 1 to time t. Consequently, the uncer-
tainty about φt, given the data y1:t−1, will be bigger, that is Var(φt|y1:t−1) >
Var(φt−1|y1:t−1). Let us suppose for the moment that φt|y1:t−1 has still a
Gamma density, and in particular suppose that

φt|y1:t−1 ∼ G(δ∗αt−1, δ
∗βt−1) , (4.18)

where 0 < δ∗ < 1. Notice that the expected value is not changed: E(φt|y1:t−1) =
E(φt−1|y1:t−1) = αt−1/βt−1, while the variance is bigger: Var(φt|y1:t−1) =
1/δ∗ Var(φt−1|y1:t−1), with 1/δ∗ > 1. With this assumption, once a new ob-
servation yt becomes available, one can use the updating formulae of Propo-
sition 4.1, but starting from (4.18) in place of the G(αt−1, βt−1). Letting
α∗
t = δ∗αt−1, β

∗
t = δ∗βt−1, we obtain

Yt|y1:t−1 ∼ T (ft, Q̃t
β∗
t

α∗
t

, 2α∗
t )

and

θt|y1:t ∼ T (mt, C̃t
βt
αt
, 2αt)

where

αt = α∗
t +

m

2
, βt = β∗

t +
1

2
(yt − ft)

′

Q̃−1
t (yt − ft). (4.19)

For m = 1, the above expressions give

αt = (δ∗)tα0 + 1
2

∑t
i=1(δ

∗)i−1

βt = (δ∗)tβ0 + 1
2

∑t
i=1(δ

∗)t−iẽ2i
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where ẽ2t = (yt − ft)
2/Q̃t.

It remains to motivate the assumption (4.18), and in fact we have not
specified yet the dynamics that leads from φt−1 to φt. It can be proved that
assumption (4.18) is equivalent to the following multiplicative model for the
dynamics of φt

φt =
γt
δ∗
φt−1 ,

where γt is a random variable independent on φt−1, having a beta distribution
with parameters (δ∗αt−1, (1 − δ∗)αt−1), so that E(γt) = δ∗. Therefore, φt is
equivalent to φt−1 multiplied by a random impulse with expected value 1
(E(γt/δ

∗) = 1).
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Fig. 4.4. Lake Superior data (gray) and one-step-ahead forecasts, with 90% prob-
ability intervals. Both Vt and Wt are specified through discount factors

For illustration with the Lake Superior data, let again m0 = E(θ0|φ0) = 0,
C̃0 = 107, α0 = 2, β0 = 20 and use discount factors δ = 0.9, for W̃t, and
δ∗ = 0.9, so that Var(φt|y1:t−1) = (1/0.9)Var(φt−1|y1:t−1). Figure 4.4 shows
the one-step-ahead point forecasts ft, with 90% probability intervals.

R code

> y <- ts(read.table("Datasets/lakeSuperior.dat",

2 + skip = 3)[, 2], start = c(1900, 1))

> beta0 <- 20; alpha0 <- 2 ; TT <- length(y)

4 > mod <- dlmModPoly(1, dV = 1)

> modFilt <- dlmFilterDF(y, mod, DF = 0.9)

6 > out <- residuals(modFilt)

> DFstar <- 0.9

8 > delta <- DFstar^0 : TT

> alpha <- delta[-1] * alpha0 + cumsum(delta[-TT]) / 2

10 > res <- as.vector(out$res)
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> beta <- delta[-1] * beta0

12 > for (i in 1 : TT)

+ beta[i] <- beta[i] + 0.5 * sum(delta[i:1] * res[1:i]^2)

14 > alphaStar <- DFstar * c(alpha0, alpha)

> betaStar <- DFstar * c(beta0, beta)

16 > tt <- qt(0.95, df = 2 * alphaStar[1 : TT])

> param <- sqrt(out$sd) * (betaStar / alphaStar)[1 : TT]

18 > plot(y, ylab = "Observed/One step ahead forecasts",

+ type = "o", col = "darkgray", ylim =c(20, 45))

20 > lines(window(modFilt$f, start = 1902), type = "o")

> lines(window(modFilt$f, start = 1902) - tt * sqrt(param),

22 + lty = 2, lwd = 2)

> lines(window(modFilt$f, start = 1902) + tt * sqrt(param),

24 + lty = 2, lwd = 2)

4.4 Simulation-based Bayesian inference

For a DLM including a possibly multidimensional unknown parameter ψ in
its specification, and observations y1:T , the posterior distribution of the pa-
rameter and unobservable states is

π(ψ, θ0:T |y1:T ). (4.20)

As mentioned in Section 4.2, in general it is impossible to compute this dis-
tribution in closed form. Therefore, in order to come up with posterior sum-
maries one has to resort to numerical methods, almost invariably stochastic,
Monte Carlo methods. The customary MCMC approach to analyze the pos-
terior distribution (4.20) is to generate a (dependent) sample from it and
evaluate posterior summaries from the simulated sample. The inclusion of the
states in the posterior distribution usually simplifies the design of an efficient
sampler, even when one is only interested in the posterior distribution of the
unknown parameter, π(ψ|y1:T ). In fact, drawing a random variable/vector
from π(ψ|θ0:T , y1:T ) is almost invariably much easier than drawing it from
π(ψ|y1:T ); in addition, efficient algorithms to generate the states conditionally
on the data and the unknown parameter are available, see Section 4.4.1. This
suggests that a sample from (4.20) can be obtained from a Gibbs sampler alter-
nating draws from π(ψ|θ0:T , y1:T ) and π(θ0:T |ψ, y1:T ). The simulated sample
from the posterior can in turn be used as input to generate a sample from the
predictive distribution of states and observables, π(θT+1:T+k, yT+1:T+k|y1;T ).
In fact,

π(θT+1:T+k, yT+1:T+k, ψ, θT |y1;T ) =

π(θT+1:T+k, yT+1:T+k|ψ, θT ) · π(ψ, θT |y1;T ).
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Therefore, for every pair (ψ, θT ) drawn from π(ψ, θT |y1:T ), one can generate
the “future” θT+1:T+k, yT+1:T+k from π(θT+1:T+k, yT+1:T+k|ψ, θT ) (see Sec-
tion 2.8) to obtain a sample from the predictive distribution.

The approach sketched above completely solves the filtering, smoothing,
and forecasting problems for a DLM with unknown parameters. However, if
one needs to update the posterior distribution after one or more new observa-
tions become available, then one has to run the Gibbs sampler all over again,
and this can be extremely inefficient. As already mentioned, on-line anal-
ysis and simulation-based sequential updating of the posterior distribution
of states and unknown parameters are best dealt with employing sequential
Monte Carlo techniques.

4.4.1 Drawing the states given y1:T : forward filtering backward
sampling

In a Gibbs sampling from π(θ0:T , ψ|y1:T ), one needs to simulate from the
full conditional densities π(ψ|θ0:T , y1:T ) and π(θ0:T |ψ, y1:T ). While the first
density is problem specific, the general expression of the latter density and
efficient algorithms for sampling from it are available.

The smoothing recursions provide an algorithm for computing the mean
and variance of the distribution of θt conditional on y1:T and ψ (t =
0, 1, . . . , T ). Since all the involved distributions are Normal, this completely
determines the marginal posterior distribution of θt given y0:T and ψ. If one is
interested in the joint posterior distribution of θ0:T given (y1:T , ψ), then also
the posterior covariances between θt and θs have to be computed. General
formulae to recursively evaluate these covariances are available, see Durbin
and Koopman (2001). However, when π(θ0:T |ψ, y1:T ) has the role of full con-
ditional in a Gibbs sampling from π(θ0:T , ψ|y1:T ), the main question becomes:
how can one generate a draw from the distribution of θ0:T given (y1:T , ψ)?
We will use a method due to Carter and Kohn (1994), Früwirth-Schnatter
(1994), and Shephard (1994), which is now widely known as the forward fil-
tering backward sampling (FFBS) algorithm. By reading the description that
follows, the reader will realize that FFBS is essentially a simulation version
of the smoothing recursions.

We can write the joint distribution of θ0:T given y1:T as

π(θ0:T |y1:T ) =

T∏

t=0

π(θt|θt+1:T , y1:T ), (4.21)

where the last factor in the product is simply π(θT |y1:T ), i.e., the filtering
distribution of θT , which is N (mT , CT ). Formula (4.21) suggests that in order
to obtain a draw from the distribution on the left-hand side, one can start by
drawing θT from a N (mT , CT ) and then, for t = T−1, T−2, . . . , 0, recursively
draw θt from π(θt|θt+1:T , y1:T ). We have seen in the proof of Proposition 2.4
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that π(θt|θt+1:T , y1:T ) = π(θt|θt+1, y1:t), and we showed that this distribution
is N (ht,Ht), with

ht = mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct.

Therefore, having already (θt+1, . . . , θT ), the next step consists in drawing θt
from a N (ht,Ht). Note that ht explicitly depends on the value of θt+1 already
generated. The FFBS algorithm is summarized in Algorithm 4.1

1. Run Kalman filter.

2. Draw θT ∼ N (mT , CT ).
3. For t = T − 1, . . . , 0, draw θt ∼ N (ht, Ht).

Algorithm 4.1: Forward filtering backward sampling

FFBS is commonly used as a building block of a Gibbs sampler, as we
will illustrate in many examples in the remaining of the chapter, in particular
in Section 4.5. However, it can be of interest also in DLMs containing no
unknown parameters. In this case, the marginal smoothing distribution of each
θt is usually enough to evaluate posterior probabilities of interest. However,
the posterior distribution of a nonlinear function of the states may be difficult
or impossible to derive, even when all the parameters of the model are known.
In this case FFBS provides an easy way to generate an independent sample
from the posterior of the nonlinear function of interest. Note that in this type
of application the “forward filtering” part of the algorithm only needs to be
performed once.

4.4.2 General strategies for MCMC

For a completely specified DLM, i.e., one not containing unknown parame-
ters, draws from the posterior distribution of the states, and possibly from
the forecast distribution of states and observations, can be obtained using
the FFBS algorithm described in the previous subsection. In the more real-
istic situation of a DLM containing an unknown parameter vector ψ, with
prior distribution π(ψ), in the observation, system, or variance matrices, one
typically uses MCMC to obtain posterior summaries of the distributions of
interest. Almost all Markov chain samplers for posterior analysis of a DLM
fall in one of the following categories: Gibbs samplers, which include the states
as latent variables; marginal samplers; and hybrid samplers, which combine
aspects of both. Note that, depending on the context, the analyst may be
interested in making inference about the unobservable states, the unknown
parameter, or both. Of the three types of samplers, two (Gibbs and hybrid
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samplers) generate draws from the joint posterior of the states and the pa-
rameter, while the other (marginal samplers) only generates draws from the
posterior of the parameter. Keep in mind, however, that once a sample from
the posterior distribution of the parameter is available, a sample from the
joint posterior of states and parameter can be easily obtained in view of the
decomposition

π(θ0:T , ψ|y1:T ) = π(θ0:T |ψ, y1:T ) · π(ψ|y1:T ).

More specifically, for each ψ(i) in the sample (i = 1, . . . , N), it is enough to

draw θ
(i)
0:T from π(θ0:T |ψ = ψ(i), y1:T ) using FFBS, and {(θ(i)0:T , ψ

(i)) : i =
1, . . . , N} will be the required sample from the joint posterior distribution.

The Gibbs sampling approach, consisting in drawing in turn the states
from their conditional distribution given the parameter and observations, and
the parameter from its conditional distribution given the states and obser-
vations, is summarized in Algorithm 4.2. Package dlm provides the function

0. Initialize: set ψ = ψ(0).

1. For i = 1, . . . , N:

a) Draw θ
(i)
0:T from π(θ0:T |y1:T , ψ = ψ(i−1)) using FFBS.

b) Draw ψ(i) from π(ψ|y1:T , θ0:T = θ
(i)
0:T ).

Algorithm 4.2: Forward Filtering Backward Sampling in a Gibbs sampler

dlmBSample which, in conjunction with dlmFilter, can be used to perform
step (a). Step (b), on the other hand, depends heavily on the model under
consideration, including the prior distribution on ψ. In fact, when ψ is an
r-dimensional vector, it is often simpler to perform a Gibbs step for each
component of ψ instead of drawing ψ at once. The intermediate approach of
drawing blocks of components of ψ together is another option. In any case,
when a full conditional distribution is difficult to sample from, a Metropolis–
Hastings step can replace the corresponding Gibbs step. A generic sampler for
nonstandard distributions is ARMS (Section 1.6), available in package dlm in
the function arms.

The second approach, marginal sampling, is conceptually straightforward,
consisting of drawing a sample from π(ψ|y0:T ). The actual implementation
of the sampler depends on the model under consideration. Typically, if ψ
is multivariate, one can use a Gibbs sampler, drawing each component, or
block of components, from its full conditional distributions, possibly using a
Metropolis–Hastings step when the relevant full conditional is not a standard
distribution. Again, ARMS can be used in the latter case.

A hybrid sampler can be used when the parameter can be decomposed
in two components, that is, when ψ can be written as (ψ1, ψ2), where each
component may be univariate or multivariate. Algorithm 4.3 gives an algo-
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0. Initialize: set ψ2 = ψ
(0)
2 .

1. For i = 1, . . . , N:

a) Draw ψ
(i)
1 from π(ψ1|y0:T , ψ2 = ψ

(i−1)
2 ).

b) Draw θ
(i)
0:T from π(θ0:T |y1:T , ψ1 = ψ

(i)
1 , ψ2 = ψ

(i−1)
2 ) using FFBS.

c) Draw ψ
(i)
2 from π(ψ2|y1:T , θ0:T = θ

(i)
0:T , ψ1 = ψ

(i)
1 ).

Algorithm 4.3: Forward Filtering Backward Sampling in a hybrid sampler

rithmic description of a generic hybrid sampler. As for the previous schemes,
Metropolis–Hastings steps, and ARMS in particular, can be substituted for
direct sampling in steps (a) and (c). Step (b) can always be performed using
dlmFilter followed by dlmBSample. For the theoretically inclined reader, let
us point out a subtle difference between this sampler and a Gibbs sampler.
In a Gibbs sampler, each step consists of applying a Markov transition kernel
whose invariant distribution is the target distribution, so that the latter is
also invariant for the composition of all the kernels. In a hybrid sampler, on
the other hand, the target distribution is not invariant for the Markov kernel
corresponding to step (a), so the previous argument does not apply directly.
However, it is not difficult to show that the composition of step (a) and (b)
does preserve the target distribution and so, when combined with step (c),
which is a standard Gibbs step, it produces a Markov kernel having the correct
invariant distribution. An example of Bayesian inference with hybrid sampling
will be given in Section 4.6.1.

The output produced by a Markov chain sampler must always be checked
to assess convergence to the stationary distribution and mixing of the chain.
Given that the chain has practically reached the stationary distribution, mix-
ing can be assessed by looking at autocorrelation functions of parameters or
functions of interest. Ideally, one would like to have as low a correlation as
possible between draws. Correlation may be reduced by thinning the simu-
lated chain, i.e., discarding a fixed number of iterations between every saved
value. Although this method is very easy to implement, the improvements are
usually only marginal, unless the number of discarded simulations is substan-
tial, which significantly increases the time required to run the entire sampler.
As far as assessing convergence, a fairly extensive body of literature exists
on diagnostic tools for MCMC. In R the package BOA provides a suite of
functions implementing many of these diagnostics. In most cases, a visual in-
spection of the output, after discarding a first part of the simulated chain
as burn in, can reveal obvious departures from stationarity. For an organic
treatment of MCMC diagnostics, we refer to Robert and Casella (2004) and
references therein.
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4.4.3 Illustration: Gibbs sampling for a local level model

Before moving on to more general models, we give in the present section a sim-
ple illustration of how a Gibbs sampler can be implemented in practice. The
example that we are going to examine is the local level model with unknown
observation and evolution variances. A convenient, yet flexible, family of priors
for each variance is the inverse-gamma family. More specifically, let ψ1 = V −1

and ψ2 = W−1, and assume that ψ1 and ψ2 are a priori independent, with

ψi ∼ G(ai, bi), i = 1, 2.

The parameters of the prior, ai, bi (i = 1, 2) can be specified so as to match
the prior opinion of the analyst about the unknown precisions, expressed in
terms of their means and variances. Most people find it easier to specify prior
moments (mean and variance) of an unknown variance than it is to specify
those of a precision. In this case, just recall that a G(a, b) prior for ψi is the
same as an Inverse Gamma prior with the same parameters for ψ−1

i .
A Gibbs sampler for this model will iterate the following three steps: draw

θ0:T , draw ψ1, and draw ψ2. The random quantities generated in each of the
three steps should be drawn from their full conditional distribution, i.e., the
distribution of that quantity given all the other random variables in the model,
including the observations. Note that the states θ0:T must be included among
the conditioning variables when drawing ψ1 and ψ2. To generate θ0:T we can
use the FFBS algorithm, setting ψ1 and ψ2 to their most recently simulated
value. This is something that can be done in a straightforward way using the
function dlmBSample. On the other hand, a simple calculation is needed to
determine the full conditional distribution of ψ1. The standard approach is
based on the fact that the full conditional distribution is proportional to the
joint distribution of all the random variables considered. For ψ1, this is

π(ψ1|ψ2, θ0:T , y1:T ) ∝ π(ψ1, ψ2, θ0:T , y1:T )

∝ π(y1:T |θ0:T , ψ1, ψ2)π(θ0:T |ψ1, ψ2)π(ψ1, ψ2)

∝
T∏

t=1

π(yt|θt, ψ1)
T∏

t=1

π(θt|θt−1, ψ2)π(ψ1)π(ψ2)

∝ π(ψ1)ψ
T/2
1 exp

(
−ψ1

2

T∑

t=1

(yt − θt)
2

)

∝ ψ
a1+T/2−1
1 exp

(
−ψ1 ·

[
b1 +

1

2

T∑

t=1

(yt − θt)
2

])
.

From the previous equations we deduce that ψ1 and ψ2 are conditionally
independent, given θ0:T and y1:T , and
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ψ1|θ0:T , y1:T ∼ G
(
a1 +

T

2
, b1 +

1

2

T∑

t=1

(yt − θt)
2

)
.

A similar argument shows that

ψ2|θ0:T , y1:T ∼ G
(
a2 +

T

2
, b2 +

1

2

T∑

t=1

(θt − θt−1)
2

)
.

The following code implements the Gibbs sampler discussed above for the Nile
River data. The actual sampler consists of the loop starting on line 18; what
comes before is just book keeping, space allocation for the output, and the
definition of starting values and variables that do not change within the main
loop.

R code

> a1 <- 2

2 > b1 <- 0.0001

> a2 <- 2

4 > b2 <- 0.0001

> ## starting values

6 > psi1 <- 1

> psi2 <- 1

8 > mod_level <- dlmModPoly(1, dV = 1 / psi1, dW = 1 / psi2)

>

10 > mc <- 1500

> psi1_save <- numeric(mc)

12 > psi2_save <- numeric(mc)

> n <- length(Nile)

14 > sh1 <- a1 + n / 2

> sh2 <- a2 + n / 2

16 > set.seed(10)

>

18 > for (it in 1 : mc)

+ {
20 + ## draw the states: FFBS

+ filt <- dlmFilter(Nile, mod_level)

22 + level <- dlmBSample(filt)

+ ## draw observation precision psi1

24 + rate <- b1 + crossprod(Nile - level[-1]) / 2

+ psi1 <- rgamma(1, shape = sh1, rate = rate)

26 + ## draw system precision psi2

+ rate <- b2 + crossprod(level[-1] - level[-n]) / 2

28 + psi2 <- rgamma(1, shape = sh2, rate = rate)

+ ## update and save

30 + V(mod_level) <- 1 / psi1
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+ W(mod_level) <- 1 / psi2

32 + psi1_save[it] <- psi1

+ psi2_save[it] <- psi2

34 + }

A visual analysis of trace plots (not shown) shows that the chain reached
convergence after the first two or three hundred iterations. In the code we
did not save the simulated states, assuming the focus of the analysis was
on the unknown variances. Note, however, that a sample from the posterior
distribution of the states does not require us to run the Gibbs sampler all over
again, as one can just run the FFBS algorithm once for each simulated value
of (ψ1, ψ2), thanks to the equality

π(θ0:T , ψ1, ψ2|y1:T ) = π(θ0:T |ψ1, ψ2y1:T )π(ψ1, ψ2|y1:T ).

4.5 Unknown variances

In many of the models analyzed in Chapter 3, the system and observation
matrices Gt and Ft are set to specific values as part of the model specification.
This is the case for polynomial and seasonal factor models, for example. The
only possibly unknown parameters are therefore part of the variance matrices
Wt and Vt. In Section 4.3.1, we discussed Bayesian conjugate inference for the
simple case of Vt and Wt known up to a scale factor; in more general cases,
analytical computations become more complex and MCMC approximations
are used, as we illustrate in this section.

4.5.1 Constant unknown variances: d Inverse Gamma prior

This is the simplest and most commonly used model for unknown variances.
Let us assume that the observations are univariate (m = 1). If the observation
variance and the evolution covariance matrices are unknown, the simplest
assumption is to consider them as time-invariant, with W diagonal. More
specifically, and working as usual with the precisions, a d-inverse-gamma prior
assumes that

Vt = φ−1
y , Wt = diag(φ−1

θ,1, . . . , φ
−1
θ,p)

and φy, φθ,1, . . . , φθ,p have independent Gamma distributions. This implies
that the prior on the vector of the variances (φ−1

y , φ−1
θ,1, . . . , φ

−1
θ,p) is the product

of d = (p + 1) Inverse-Gamma densities. To fix the prior hyperparamters, it
is usually convenient to express a prior guess on the unknown precisions,
E(φy) = ay, and E(φθ,i) = aθ,i, with prior uncertainty summarized by the
prior variances Var(φy) = by, Var(φθ,i) = bθ,i, i = 1 . . . , p, so that the Gamma
priors can be parametrized as
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φy ∼ G(αy, βy), φθ,i ∼ G(αθ,i, βθ,i) i = 1, . . . , p,

with

αy =
a2
y

by
, βy =

ay
by
, αθ,i =

a2
θ,i

bθ,i
, βθ,i =

aθ,i
bθ,i

, i = 1, . . . , p.

As particular cases, this framework includes a Bayesian treatment of nth order
polynomial models as well as the structural time series models of Harvey and
coauthors, discussed in Chapter 3.

Given the observations y1:T , the joint posterior of the states θ0:T and
the unknown parameters ψ = (φy, φθ,1, . . . , φθ,p) is proportional to the joint
density

π(y1:T , θ0:T , ψ) = π(y1:T |θ0:T , ψ) · π(θ0:T |ψ) · π(ψ)

=
T∏

t=1

π(yt|θt, φy) ·
T∏

t=1

π(θt|θt−1, φθ,1, . . . , φθ,p) · π(θ0) · π(φy) ·
p∏

i=1

π(φθ,i).

Note that the second product in the factorization can also be written as a
product over i = 1, . . . , p, due to the diagonal form of W . This alternative
factorization is useful when deriving the full conditional distribution of the
φθ,i’s. A Gibbs sampler for the d-Inverse-Gamma model draws from the full
conditional distribution of the states and from the full conditional distribu-
tions of φy, φθ,1, . . . , φθ,p in turn. Sampling the states can be done using the
FFBS algorithm of Section 4.4.1. Let us derive the full conditional distribu-
tion1 of φy:

π(φy| . . .) ∝
T∏

t=1

π(yt|θt, φy) · π(φy)

∝ φ
T
2 +αy−1
y exp

{
−φy ·

[
1

2

T∑

t=1

(yt − Ftθt)
2 + βy

]}
.

The full conditional of φy is therefore again a Gamma distribution,

φy| . . . ∼ G
(
αy +

T

2
, βy +

1

2
SSy

)
,

with SSy =
∑T
t=1(yt − Ftθt)

2. Similarly, it is easy to show that the full
conditionals of the φθ,i’s are as follows:

φθ,i| . . . ∼ G
(
αθ,i +

T

2
, βθ,i +

1

2
SSθ,i

)
, i = 1, . . . , p,

1 The dots on the right-hand side of the conditioning vertical bar in π(φy| . . .) stay
for every other random variable in the model except φy, including the states θ0:T .
This standard convention will be used throughout.
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with SSθ,i =
∑T
t=1(θt,i − (Gtθt−1)i)

2.

Example. Let us consider again the data on Spain investment (Sec-
tion 3.2.1). We are going to fit a 2nd-order polynomial model—local linear
growth—to the data. The priors for the precisions of the observation and evo-
lution errors are (independent) gamma distributions with means ay, aµ, aβ
and variances by, bµ, bβ . We decide for the values ay = 1, aµ = aβ = 10,
with a common variance equal to 1000, to express a large uncertainty in
the prior estimate of the precisions. The function dlmGibbsDIG can be called
to generate a sample from the posterior distribution of the parameters and
the states. The means and variances of the gamma priors are passed to the
function via the arguments a.y, b.y (prior mean and variance of observation
precision), a.theta, b.theta (prior mean(s) and variance(s) of evolution pre-
cision(s)). Alternatively, the prior distribution can be specified in terms of the
usual shape and rate parameters of the gamma distribution. The arguments
to pass in this case are shape.y, rate.y, shape.theta, and rate.theta.
The number of samples from the posterior to generate is determined by the
argument n.sample, while the logical argument save.states is used to de-
termine whether to include the generated unobservable states in the output.
In addition, a thinning parameter can be specified via the integer argument
thin. This gives the number of Gibbs iterations to discard for every saved
one. Finally, the data and the model are passed via the arguments y and mod,
respectively. The following display show how dlmGibbsDIG works in practice.

R code

> invSpain <- ts(read.table("Datasets/invest2.dat",

2 + colClasses = "numeric")[,2]/1000,

+ start = 1960)

4 > set.seed(5672)

> MCMC <- 12000

6 > gibbsOut <- dlmGibbsDIG(invSpain, mod = dlmModPoly(2),

+ a.y = 1, b.y = 1000,

8 + a.theta = 10, b.theta = 1000,

+ n.sample = MCMC,

10 + thin = 1, save.states = FALSE)

Setting thin = 1 means that the function actually generates a sample
of size 24,000 but only keeps in the output every other value. In addition,
the states are not returned (save.states = FALSE). Considering the first
2000 saved iterations as burn in, one can proceed to graphically assess the
convergence and mixing properties of the sampler. Figure 4.5 displays a few
diagnostic plots obtained from the MCMC output for the variances V , W11,
and W22. The first row shows the traces of the sampler, i.e., the simulated
values, the second the running ergodic means of the parameters (starting
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Fig. 4.5. Diagnostic plots for d-inverse-Gamma model applied to Spain investments

at iteration 500), and the last the estimated autocovariance functions. We
obtained the running ergodic means using the function ergMean. For example,
the plot in the first column and second row was created using the following
commands.

R code

> use <- MCMC - burn

2 > from <- 0.05 * use

> plot(ergMean(gibbsOut$dV[-(1 : burn)], from), type = "l",

4 + xaxt = "n", xlab = "", ylab = "")

> at <- pretty(c(0, use), n = 3)

6 > at <- at[at >= from]

> axis(1, at = at - from, labels = format(at))

From a visual assessment of the MCMC output it seems fair to deduce that
convergence has been achieved and, while the acf’s of the simulated variances
do not decay very fast, the ergodic means are nonetheless pretty stable in
the last part of the plots. One can therefore go ahead and use the MCMC
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output to estimate the posterior means of the unknown variances. The func-
tion mcmcMean computes the (column) means of a matrix of simulated values,
together with an estimate of the Monte Carlo standard deviation, obtained
using Sokal’s method (Section 1.6).

R code

> mcmcMean(cbind(gibbsOut$dV[-(1 : burn), ],

2 + gibbsOut$dW[-(1 : burn), ]))

V.1 V.2 V.3

4 0.012197 0.117391 0.329588

(0.000743) (0.007682) (0.007833)

Bivariate plots of the simulated parameters may provide additional insight.
Consider the plots in Figure 4.6. The joint realizations seem to suggest that
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Fig. 4.6. Bivariate plots for d-inverse-Gamma model applied to Spain investments

one, or maybe two, of the model variances may be zero. From the third plot
we can see that when W11 is close to zero then W22 is clearly positive, and vice
versa: W11 and W22 cannot both be zero. The second plot suggests that this
is also true for V and W22. From the first plot it seems that V and W11 may
be zero, possibly at the same time. In summary, by looking at the bivariate
plots, three reduced models come up as alternative to the full model worth
exploring: the submodel obtained by setting V = 0, the submodel W11 = 0,
the submodel V = W11 = 0, and the submodel W22 = 0. We do not pursue
the issue of Bayesian model selection here; a recent reference is Früwirth-
Schnatter and Wagner (2008), who suggest a different prior on the unknown
variances, more suitable for model comparison.

4.5.2 Multivariate extensions

Multivariate extensions of the d Inverse-Gamma model can be devised, using
independent inverse-Wishart priors. Suppose that Yt is m-variate, m ≥ 1, and
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W is block-diagonal with elements (W1, . . . ,Wh), Wi having dimension pi×pi.
Examples of DLMs with a block-diagonal state covariance matrix W include
additive compositions of structural models or SUTSE models, presented in
Chapter 3. At least in principle, the case of a general matrix W is obtained
by letting h = 1.

Let us parametrize the model in the precision matrices Φ0 = V −1

and Φ = W−1, the latter being block-diagonal with elements Φi = W−1
i ,

i = 1, . . . , h. We assume that Φ0, Φ1, . . . , Φh have independent Wishart pri-
ors, Φi ∼ W(νi, Si), i = 0, . . . , h, where Si is a symmetric positive defi-
nite matrix of dimensions pi × pi, with p0 = m. Then the posterior density
π(θ0:T , Φ0, . . . , Φh|y1:T ) is proportional to

T∏

t=1

N (yt;Ftθt, Φ
−1
0 ) N (θt;Gθt−1, Φ

−1)N (θ0;m0, C0)

·W(Φ0; ν0, S0)
h∏

i=1

W(Φi; νi, Si).

(4.22)

A Gibbs sampler for π is obtained by iteratively sampling the states θ0:T (via
the FFBS algorithm) and the precisions Φ0, . . . , Φh from their full conditionals.
From (4.22) we see that the full conditional density of Φi, for i = 1, . . . , h, is
proportional to

T∏

t=1

h∏

j=1

|Φj |1/2 exp{−1

2
(θt −Gtθt−1)

′Φ(θt −Gtθt−1)}·

|Φi|νi−(pi+1)/2 exp{−tr(SiΦi)}

∝ |Φi|T/2+νi−(pi+1)/2 exp{−tr(
1

2

T∑

t=1

(θt −Gtθt−1)(θt −Gtθt−1)
′Φ) − tr(SiΦi)}

(see Section 1.5). Let

SSt = (θt −Gtθt−1)(θt −Gtθt−1)
′

and partition it in accordance with Φ:

SSt =




SS11,t · · · SS1h,t

...
. . .

...
SSh1,t · · · SShh,t



 . (4.23)

Then tr(SStΦ) =
∑h
j=1 tr(SSjj,tΦj), so that the full conditional of Φi results

to be proportional to

|Φi|T/2+νi−(pi+1)/2 exp

{
−tr

((
1

2
SSi· + Si

)
Φi

)}
,
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with SSi· =
∑T
t=1 SSii,t. That is, for i = 1, . . . , h, the full conditional of Φi is

Wishart, with parameters (νi + T/2, 1/2SSi· + Si). In particular, for a DLM
obtained by combining component models as in Section 3.2, we have

θt =




θ1,t
...
θh,t



 Gt =




G1,t · · · 0

0
. . . 0

0 · · · Gh,t



 ,

with θi,t and Gi,t referring to the ith component model. Then, the full condi-
tional of Φi is W(νi + T/2, Si + 1/2SSi·), and Sii,t = (θi,t −Gi,tθi,t−1)(θi,t −
Gi,tθi,t−1)

′.
Similarly, one finds that the full conditional of Φ0 is

W(ν0 + T/2, S0 + 1/2SSy),

with SSy =
∑T
t=1(yt − Ftθt)(yt − Ftθt)

′.

Example: SUTSE models.
As an illustration, let us consider again the data on Spain and Denmark
investments. In Section 3.3.2, we used a SUTSE system where each series
was described through a linear growth model; there, we just plugged in the
MLE estimates of the unknown variances, while here we illustrate Bayesian
inference. The prior distributions for the precisions Φ0 = V −1, Φ1 = W−1

µ and

φ2 = W−1
β are independent Wishart, namely Φj ∼ W(νj , Sj), j = 0, 1, 2.

It is convenient to express the Wishart hyperparameters as ν0 = (δ0 +
m − 1)/2 = (δ0 + 1)/2, νj = (δj + pj − 1)/2 = (δj + 1)/2, j = 1, 2 and
S0 = V0/2, S1 = Wµ,0/2, S2 = Wβ,0/2, so that, if δj > 2, j = 0, 1, 2,

E(V ) =
1

δ0 − 2
V0, E(Wµ) =

1

δ1 − 2
Wµ,0 E(Wβ) =

1

δ2 − 2
Wβ,0

(see Appendix A). Thus, the matrix V0 can be fixed as V0 = (δ0 − 2)E(V ),
and similarly for Wµ,0 and Wβ,0. The parameters δi give an idea of the prior
uncertainty: note that, from the full conditional distributions, we have

E(V |y1:T ,Wµ,Wβ , θ0:t) =

=
δ0 − 2

(δ0 + T ) − 2
E(V ) +

T

(δ0 + T ) − 2

∑T
t=1(yt − Ftθt)(yt − Ftθt)

′

T
,

and analogous expressions hold for the conditional expectations of Wµ and
Wβ . So, values of δi close to 2 imply a smaller weight of the prior in the
updating. Expressing honest prior information on a covariance matrix is diffi-
cult, and data-dependent priors are sometimes used; but for this exercise let’s
suppose that
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V0 = (δ0 − 2)

[
102 0
0 5002

]
,

Wµ,0 = (δ1 − 2)

[
0.012 0

0 0.012

]
, Wβ,0 = (δ2 − 2)

[
52 0
0 1002

]
,

with δ0 = δ2 = 3 and δ1 = 100. The choice of Wµ,0 and δ1 expresses the
prior assumption that the two individual linear growth models are in fact
(independent) integrated random walks; the other choices give a prior idea of
the signal-to-noise ratio.

The Gibbs sampling from the joint posterior π(θ0:T , Φ0, Φ1, Φ2|y1:T ) gen-
erates in turn the state vectors θ0:T and the precision Φ0, Φ1, Φ2. The full
conditional of Φ0 is

W
(
δ0 + 1 + T

2
,

1

2
(V0 + SSy)

)

and the full conditionals of Φ1 = W−1
µ and Φ2 = W−1

β are, respectively,
W((δ1 + 1 + T )/2, (Wµ,0 + SS1·)/2) and W((δ2 + 1 + T )/2, (Wβ,0 + SS2·)/2).
Note that the function rwishart in the package dlm takes as inputs the degrees
of freedom and the scale matrix (if Φ ∼ W(δ/2, V0/2), the degrees of freedom
are δ and the scale matrix is V −1

0 ).

R code

> inv <- read.table("Datasets/invest2.dat",

2 + col.names = c("Denmark", "Spain"))

> y <- ts(inv, frequency = 1, start = 1960)

4 > # prior hyperparameters

> delta0 <- delta2 <- 3 ; delta1 <- 100

6 > V0 <- (delta0 - 2) *diag(c(10^2, 500^2))

> Wmu0 <- (delta1 - 2) * diag(0.01^2, 2)

8 > Wbeta0 <- (delta2 - 2) * diag(c(5^2, 100^2))

> ## Gibbs sampling

10 > MC <- 30000

> TT <- nrow(y)

12 > gibbsTheta <- array(0, dim = c(TT + 1, 4, MC - 1))

> gibbsV <- array(0, dim = c(2, 2, MC))

14 > gibbsWmu <- array(0, dim = c(2, 2, MC))

> gibbsWbeta <- array(0, dim = c(2, 2, MC))

16 > mod <- dlm(FF = matrix(c(1, 0), nrow = 1) %x% diag(2),

+ V = diag(2),

18 + GG = matrix(c(1, 0, 1, 1), 2, 2) %x% diag(2),

+ W = bdiag(diag(2), diag(2)),

20 + m0 = c(inv[1, 1], inv[1, 2], 0, 0),

+ C0 = diag(x = 1e7, nrow = 4))

22 > # starting values

> mod$V <- gibbsV[,, 1] <- V0 / (delta0 - 2)
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24 > gibbsWmu[,, 1] <- Wmu0 / (delta1 - 2)

> gibbsWbeta[,, 1] <- Wbeta0 / (delta2 - 2)

26 > mod$W <- bdiag(gibbsWmu[,, 1], gibbsWbeta[,, 1])

> # MCMC loop

28 > set.seed(3420)

> for(it in 1 : (MC - 1))

30 + {
+ # generate states - FFBS

32 + modFilt <- dlmFilter(y, mod, simplify = TRUE)

+ gibbsTheta[,, it] <- theta <- dlmBSample(modFilt)

34 + # update V

+ S <- crossprod(y - theta[-1, ] %*% t(mod$FF)) + V0

36 + gibbsV[,, it+1] <- solve(rwishart(df = delta0 + 1 + TT,

+ p = 2, Sigma = solve(S)))

38 + mod$V <- gibbsV[,, it+1]

+ # update Wmu and Wbeta

40 + theta.center <- theta[-1, ] - (theta[-(TT + 1), ] %*%

+ t(mod$GG))

42 + SS1 <- crossprod(theta.center)[1 : 2, 1 : 2] + Wmu0

+ SS2 <- crossprod(theta.center)[3 : 4, 3 : 4] + Wbeta0

44 + gibbsWmu[,, it+1] <- solve(rwishart(df =delta1 + 1 + TT,

+ Sigma = solve(SS1)))

46 + gibbsWbeta[,, it+1] <- solve(rwishart(df = delta2 + 1 + TT,

+ Sigma = solve(SS2)))

48 + mod$W <- bdiag(gibbsWmu[,, it+1], gibbsWbeta[,, it+1])

+ }

We set the number of MCMC samples to 30,000 and remove the first
20,000 iterations as burn-in. Some convergence diagnostic plots are shown in
Figures 4.7 and 4.8. In general, mixing in the Gibbs sampling is poorer if the
parameters are strongly correlated; here, the prior restrictions onWµ facilitate
identifiability and MCMC mixing.

R code

> burn<- 1 : 20000

2 > par(mar = c(2, 4, 1, 1) + 0.1, cex = 0.8)

> par(mfrow=c(3,2))

4 > plot(ergMean(sqrt(gibbsV[1,1, -burn])), type="l",

+ main="", cex.lab=1.5, ylab=expression(sigma[1]),

6 + xlab="MCMC iteration")

> acf(sqrt(gibbsV[1,1,-burn]), main="")
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Fig. 4.7. MCMC ergodic means and autocorrelation for the observation covariance
matrix V (σ2

1 = V11, σ
2
2 = V22, σ12 = V12)
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The display below shows the MCMC estimates of the posterior means for
the parameters in V and Wβ , together with their estimated standard errors
(in parenthesis), obtained from the function mcmcMean.

R code

> cbind(mcmcMean(gibbsV[1,1,-burn]),

2 + mcmcMean(gibbsV[2,2,-burn]),

+ mcmcMean(gibbsV[2,1,-burn]))

E(V |y1:T ) =





88.358
(1.1562)

1018.469
(22.4865)

1018.469
(22.4865)

60066.43
(856.219)



 ,

E(Wβ |y1:T ) =





37.399
(0.9666)

396.591
(42.661)

396.591
(42.661)

308729.71
(2135.008)



 .

Figure 4.9 shows the MCMC approximation of the Bayesian smoothing
estimates of the level of the investments for Denmark and Spain, with marginal
5% and 95% quantiles.

The choice of an Inverse-Wishart prior on the unknown blocks of the co-
variance matrices has several advantages; in this exercise, computation of the
full conditionals is made simple by the conjugacy properties of the Inverse-
Wishart for the Gaussian model. In fact, inference on a covariance matrix is
quite delicate, implying assumptions on the dependence structure of the data.
We just note that the Inverse-Wishart prior may be too restrictive in modeling
the prior uncertainty on the elements of the covariance matrix, as discussed
earlier by Lindley (1978), and several generalizations have been proposed;
some references are Dawid (1981), Brown et al. (1994), Dawid and Lauritzen
(1993) in the context of graphical models, Consonni and Veronese (2003),
Rajaratnam et al. (2008) and references therein.

4.5.3 A model for outliers and structural breaks

In this section we consider a generalization of the d-Inverse-Gamma model
that is appropriate to account for outliers and structural breaks. As in Sec-
tion 4.5.1, we assume that observations are univariate, that Wt is diagonal,
and that the specification of Ft and Gt does not include any unknown pa-
rameter. To introduce the model, let us focus on observational outliers first.
Structural breaks—or outliers in the state series—will be dealt with in a sim-
ilar way later on. From the observation equation Yt = Ftθt+ vt, we see that a
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Fig. 4.9. MCMC smoothing estimates of the investments’ level for Denmark and
Spain, with posterior 90% probability intervals. The data are plotted in gray.

simple way to account for observations that are unusually far from their one-
step-ahead predicted value is to replace the Normal distribution of vt with
a heavy-tailed distribution. The Student-t distribution family is particularly
appealing in this respect for two reasons. On one hand, it can accommodate,
through its degrees-of-freedom parameter, different degrees of heaviness in the
tails. On the other hand, the Student-t distribution admits a simple represen-
tation as a scale mixture of Normal distributions, which allows one to treat a
DLM with t-distributed observation errors as a Gaussian DLM, conditionally
on the scale parameters. The obvious advantage is that all the standard algo-
rithms for DLMs—from the Kalman filter to FFBS—can still be used, albeit
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conditionally. In particular, within a Gibbs sampler, one can still draw the
states from their full conditional distribution using the FFBS algorithm. We
assume that the vt have Student-t distributions with νy,t degrees of freedom
and common scale parameter λ−1

y :

vt|λy, νy,t indep∼ T (0, λ−1
y , νy,t).

Introducing latent variables ωy,t, distributed as G
(νy,t

2
,
νy,t
2

)
, we can equiva-

lently write:

vt|λy, ωy,t indep∼ N
(
0, (λyωy,t)

−1
)
,

ωy,t|νy,t indep∼ G
(νy,t

2
,
νy,t
2

)
.

In other words, we are assuming that, given λy, the precisions φy,t = λyωy,t
of the observations in the DLM vary in a random fashion over time.

The latent variable ωy,t in the previous representation can be informally
interpreted as the degree of nonnormality of vt. In fact, taking the N (0, λ−1

y )
as baseline—corresponding to ωy,t = E(ωy,t) = 1—values of ωy,t lower than 1
make larger absolute values of vt more likely. Figure 4.10 shows a plot of the
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Fig. 4.10. 90th percentile of the conditional distribution of vt as a function of ωy,t

90th percentile of the N (0, (λyωy,t)
−1) as a function of ωy,t (λy is selected so

that the percentile is one when ωy,t is one). From the previous discussion, it
follows that the posterior mean of the ωy,t can be used to flag possible outliers.
As a prior for the precision parameter λy we choose a Gamma distribution
with mean ay and variance by,

λy|ay, by ∼ G
(
a2
y

by
,
ay
by

)
,
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taking in turn ay and by uniformly distributed on a large, but bounded, in-
terval,

ay ∼ Unif (0, Ay), by ∼ Unif (0, By).

Although the degrees-of-freedom parameter of a Student-t distribution can
take any positive real value, we restrict for simplicity the set of possible values
to a finite set of integers and set

νy,t|py iid∼ Mult(1, py),

where py = (py,1, . . . , py,K) is a vector of probabilities, the levels of the multi-
nomial distribution are the integers n1, . . . , nK , and the νy,t’s are indepen-
dent across t. As a convenient, yet flexible choice for n1, . . . , nK we use the
set {1, 2, . . . , 10, 20, . . . , 100}. Note that for νy,t = 100, vt is approximately
normally distributed, given λy. As a prior for py we adopt a Dirichlet distri-
bution with parameter αy = (αy,1, . . . , αy,K), py ∼ Dir(αy). This completes
the hierarchical specification of the prior distribution of the observation vari-
ances Vt. To account for possible outliers in the state components, a similar
hierarchical structure is assumed for each diagonal element of Wt, i.e., for the
precision parameters of the state innovations.

Note that in this model the precisions, or, equivalently, the variances, are
allowed to be different at different times, although in a way that does not
account for a possible correlation in time. In other words, the sequences of
precisions at different times are expected to look more like independent, or
exchangeable, sequences, rather than time series. For this reason the model
is appropriate to account for occasional abrupt changes—corresponding to
innovations having a large variance—in the state vector. For example, for
polynomial and seasonal factor models, an outlier in a component of wt corre-
sponds to an abrupt change in the corresponding component of the state, such
as a jump in the level of the series. However, the modeler does not anticipate
these changes to present a clear pattern in time.

Writing Wt,i for the ith diagonal element of Wt, i = 1, . . . , p, the hierar-
chical prior can be summarized in the following display.

V −1
t = λyωy,t, W−1

t,i = λθ,iωθ,ti,

λy|ay, by ∼ G
(
a2
y

by
,
ay
by

)
, λθ,i|aθ,i, bθ,i indep∼ G

(
a2
θ,i

bθ,i
,
aθ,i
bθ,i

)
,

ωy,t|νy,t indep∼ G
(νy,t

2
,
νy,t
2

)
, ωθ,ti|νθ,ti indep∼ G

(νθ,ti
2
,
νθ,ti
2

)
,

ay ∼ Unif (0, Ay), aθ,i
indep∼ Unif (0, Aθ,i),

by ∼ Unif (0, By), bθ,i
indep∼ Unif (0, Bθ,i),

νy,t
indep∼ Mult(1; py) νθ,ti

indep∼ Mult(1; pθ,i)

py ∼ Dir(αy) pθ,i
indep∼ Dir(αθ,i),
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with αθ,i = (αθ,i,1, . . . , αθ,i,K), i = 1, . . . ,K. Again, the levels of all the multi-
nomial distributions are the integers n1, . . . , nK .

A Gibbs sampler can be implemented to draw from the posterior distri-
bution of parameters and states of the model specified above. Given all the
unknown parameters, the states are generated at once from their joint full
conditional distribution using the standard FFBS algorithm. The full condi-
tional distributions of the parameters are easy to derive. We provide here a
detailed derivation of the full conditional distribution of λy, as an example:

π(λy| . . .) ∝ π(y1:T |θ1:T , ωy,1:T , λy) · π(λy|ay, by)

∝
T∏

t=1

λ
1
2
y exp

{
−ωy,tλy

2
(yt − Ftθt)

2

}
· λ

a2
y

by
−1

y exp

{
−λy

ay
by

}

∝ λ
T
2 +

a2
y

by
−1

y exp

{
−λy

[
1

2

T∑

t=1

ωy,t(yt − Ftθt)
2 +

ay
by

]}
.

Therefore,

λy| . . . ∼ G
(
a2
y

by
+
T

2
,
ay
by

+
1

2
SS∗

y

)
,

with SS∗
y =

∑T
t=1 ωy,t(yt − Ftθt)

2. A summary of all the full conditional
distributions of the unknown parameters is shown in Table 4.1. All the full
conditional distributions, except for those of ay, by, aθ,i, bθ,i, are standard. The
latter can be drawn from using ARMS. More specifically, we suggest using
ARMS separately on each pair (a, b).

As an example of the use of the model discussed above, consider the time
series of quarterly gas consumption in the UK from 1960 to 1986. The data
are available in R as UKgas. A plot of the data, on the log scale, suggests a
possible change in the seasonal factor around the third quarter of 1970. After
taking logs, we employ a model built on a local linear trend plus seasonal
component DLM to analyze the data. In this model the five-by-five variance
matrix Wt has only three nonzero diagonal elements: the first refers to the
level of the series, the second to the slope of the stochastic linear trend, and
the third to the seasonal factor. We packaged the entire Gibbs sampler in
the function dlmGibbsDIGt, available from the book website. The parameters
ay, by, aθ,1, bθ,1, . . . , aθ,3, bθ,3 are taken to be uniform on (0, 105), and the pa-
rameters of the four Dirichlet distributions of py, pθ,1, pθ,2, pθ,3 are all equal
to 1/19. The posterior analysis is based on 10000 iterations, after a burn-in
of 500 iterations. To reduce the autocorrelation, two extra sweeps were run
between every two consecutive saved iterations, implying that the iterations
of the sampler after burn-in were actually 30000.

R code

> y <- log(UKgas)

2 > set.seed(4521)
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λy| . . . ∼ G

„

a2
y

by
+
T

2
,
ay

by
+

1

2
SS

∗
y

«

,

with SS∗
y =

PT

t=1 ωy,t(yt − Ftθt)
2;

λθ,i| . . . ∼ G

 

a2
θ,i

bθ,i
+
T

2
,
aθ,i

bθ,i
+

1

2
SS

∗
θ,i

!

,

with SS∗
θ,i =

PT

t=1 ωθ,ti(θti − (Gtθt−1)i)
2, for i = 1, . . . , p;

ωy,t| . . . ∼ G

„

νy,t + 1

2
,
νy,t + λy(yt − Ftθt)

2

2

«

,

for t = 1, . . . , T ;

ωθ,ti| . . . ∼ G

„

νθ,ti + 1

2
,
νθ,ti + λθ,i(θti − (Gtθt−1)i)

2

2

«

,

for i = 1, . . . , p and t = 1, . . . , T ;

π(ay, by| . . .) ∝ G(λy; ay, by),

on the set 0 < ay < Ay, 0 < by < By;

π(aθ,i, bθ,i| . . .) ∝ G(λθ,i; aθ,i, bθ,i),

on 0 < aθ,i < Aθ,i, 0 < bθ,i < Bθ,i, for i = 1, . . . , p;

π(νy,t = k) ∝ G

„

ωy,t;
k

2
,
k

2

«

· py,k,

on the set {n1, . . . , nK}, for t = 1, . . . , T ;

π(νθ,ti = k) ∝ G

„

ωθ,ti;
k

2
,
k

2

«

· pθ,i,k,

on the set {n1, . . . , nK}, for i = 1, . . . , p and t = 1, . . . , T ;

py| . . . ∼ Dir(αy +Ny),

where Ny = (Ny,1, . . . , Ny,K) with, for each k, Ny,k =
PT

t=1(νy,t = k);

pθ,i| . . . ∼ Dir(αθ,i +Nθ,i),

whereNθ,i = (Nθ,i,1, . . . , Nθ,i,K) with, for each k,Nθ,i,k =
PT

t=1(νθ,ti =
k), for i = 1, . . . , p;

Table 4.1. Full conditional distributions for the model of Section 4.5.3
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> MCMC <- 10500

4 > gibbsOut <- dlmGibbsDIGt(y, mod = dlmModPoly(2) + dlmModSeas(4),

+ A_y = 10000, B_y = 10000, p = 3,

6 + n.sample = MCMC, thin = 2)

Figure 4.11, obtained with the code below, graphically summarizes the pos-
terior means of the ωy,t and ωθ,ti, t = 1, ..108, i = 1, 2, 3.

R code

> burn <- 1 : 500

2 > nuRange <- c(1 : 10, seq(20, 100, by = 10))

> omega_y <- ts(colMeans(gibbsOut$omega_y[-burn, ]),

4 + start = start(y), freq=4)

> omega_theta <- ts(apply(gibbsOut$omega_theta[,, -burn], 1 : 2,

6 + mean), start = start(y), freq = 4)

> layout(matrix(c(1, 2, 3, 4), 4, 1, TRUE))

8 > par(mar = c(5.1, 4.1, 2.1, 2.1))

> plot(omega_y, type = "p", ylim = c(0, 1.2), pch = 16,

10 + xlab = "", ylab = expression(omega[list(y, t)]))

> abline(h = 1, lty = "dashed")

12 > for (i in 1 : 3)

+ {
14 + plot(omega_theta[,i], ylim=c(0,1.2), pch = 16,

+ type = "p", xlab = "",

16 + ylab = bquote(omega[list(theta, t * .(i))]))

+ abline(h = 1, lty = "dashed")

18 + }

It is clear that there are no observational outliers, except perhaps for a
mild outlier in the third quarter of 1983, with E(ωθ,t3|y1:T ) = 0.88. The trend
is fairly stable, in particular its slope parameter. The seasonal component,
on the other hand, presents several structural breaks, particularly in the first
couple of years of the seventies. The most extreme change in the seasonal
component happened in the third quarter of 1971, when the corresponding ωt
had an estimated value of 0.012. It can also be seen that after that period of
frequent shocks, the overall variability of the seasonal component remained
higher than in the first period of observation.

From the output of the Gibbs sampler one can also estimate the unob-
served components—trend and seasonal variation—of the series. Figure 4.12
provides a plot of estimated trend and seasonal component, together with
95% probability intervals. An interesting feature of a model with time-specific
variances, like the one considered here, is that confidence intervals need not be
of constant width—even after accounting for boundary effects. This is clearly
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Fig. 4.11. UK gas consumption: posterior means of the ωt’s
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Fig. 4.12. UK gas consumption: trend and seasonal component, with 95% proba-
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seen in the example, where the 95% probability interval for the seasonal com-
ponent is wider in the period of high instability of the early seventies. The
following code was used to obtain the plot.

R code

> thetaMean <- ts(apply(gibbsTheta, 1 : 2, mean),

2 + start = start(y),

+ freq = frequency(y))

4 > LprobLim <- ts(apply(gibbsTheta, 1 : 2, quantile,

+ probs = 0.025),

6 + start = start(y), freq = frequency(y))
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> UprobLim <- ts(apply(gibbsTheta, 1 : 2, quantile,

8 + probs = 0.975),

+ start = start(y), freq = frequency(y))

10 > par(mfrow = c(2, 1), mar = c(5.1, 4.1, 2.1, 2.1))

> plot(thetaMean[, 1], xlab = "", ylab = "Trend")

12 > lines(LprobLim[, 1], lty = 2); lines(UprobLim[, 1], lty = 2)

> plot(thetaMean[, 3], xlab = "", ylab = "Seasonal", type = "o")

14 > lines(LprobLim[, 3], lty = 2); lines(UprobLim[, 3], lty = 2)

4.6 Further examples

We give further examples of Bayesian analysis via MCMC for DLMs. The first
is useful to compare MLE and Bayesian estimates.

4.6.1 Estimating the output gap: Bayesian inference

Let us consider again the problem of estimating the output gap, which we
treated in Subsection 3.2.6 using maximum likelihood estimates of the un-
known parameters of the model. Here we illustrate, instead, Bayesian infer-
ence. More specifically, we show how to implement in R a hybrid sampler
using dlmBSample and arms. The data consist of the quarterly time series
of deseasonalized real gross domestic product (GDP) of the US from 1950
to 2004, on a logarithmic scale. Following standard econometric practice, we
had assumed that the GDP can be decomposed into two unobservable com-
ponents: a stochastic trend and a stationary component. Here we compute
Bayesian estimates of the two components as well as the parameters of the
model.

The stochastic trend was described by a local linear trend, while the sta-
tionary component was an AR(2) process. As a DLM, the model is the sum,
in the sense discussed in Section 3.2, of a polynomial model of order two and
a DLM representation of a stationary AR(2) process, observed with no error.
The matrices of the resulting DLM were given by (3.36) in Section 3.2.6. The
first component of the state vector represents the trend, while the third is the
AR(2) stationary component. The AR parameters φ1 and φ2 must lie in the
stationarity region S defined by

φ1 + φ2 < 1,

φ1 − φ2 > −1,

|φ2| < 1.

The prior we select for (φ1, φ2) is a product of a N (0, (2/3)2) and a N (0, (1/3)2),
restricted to S. In this way, the prior penalizes those values of the AR parame-
ters close to the boundary of the stationarity region. For the three precisions,
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i.e., the inverses of the variances σ2
µ, σ

2
δ , and σ2

u, we assume independent
gamma priors with mean a and variance b:

G
(
a2

b
,
a

b

)
.

In this specific case, we set a = 1, b = 1000. A hybrid sampler can draw in
turn the AR parameters from π(φ1, φ2|σ2

µ, σ
2
δ , σ

2
u, y0:T ), the states, and the

three precisions from their full conditional distribution given the states and
the AR parameters. In the notation used in Algorithm 4.3, ψ1 = (φ1, φ2) and
ψ2 = ((σ2

µ)
−1, (σ2

δ )
−1, (σ2

u)
−1). The precisions, given the states and the AR

parameters, are conditionally independent and gamma-distributed. Specifi-
cally,

(σ2
µ)

−1| . . . ∼ G
(
a2

b
+
T

2
,
a

b
+

1

2

T∑

t=1

(
θt,1 − (Gθt−1)1

)2
)
,

(σ2
δ )

−1| . . . ∼ G
(
a2

b
+
T

2
,
a

b
+

1

2

T∑

t=1

(
θt,2 − (Gθt−1)2

)2
)
,

(σ2
u)

−1| . . . ∼ G
(
a2

b
+
T

2
,
a

b
+

1

2

T∑

t=1

(
θt,3 − (Gθt−1)3

)2
)
.

(4.24)

The AR parameters, given the precisions (but not the states), have a non-
standard distribution and we can use ARMS to draw from their joint full
conditional distribution. One can write a function to implement the sampler
in R. One such function, on which the analysis that follows is based, is avail-
able from the book web site. We reproduce below the relevant part of the
main loop. In the code, theta is a (T + 1) matrix of states and gibbsPhi

and gibbsVars are matrices in which the results of the simulation are stored.
The states, generated in the loop, can optionally be saved, but they can also
be easily generated again, given the simulated values of the AR and variance
parameters.

R code

for (it in 1 : mcmc)

2 {
## generate AR parameters

4 mod$GG[3 : 4, 3] <- arms(mod$GG[3 : 4, 3],

ARfullCond, AR2support, 1)

6 ## generate states - FFBS

modFilt <- dlmFilter(y, mod, simplify = TRUE)

8 theta[] <- dlmBSample(modFilt)

## generate W

10 theta.center <- theta[-1, -4, drop = FALSE] -

(theta[-(nobs + 1), , drop = FALSE] %*% t(mod$GG))[, -4]
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12 SStheta <- drop(sapply( 1 : 3, function(i)

crossprod(theta.center[, i])))

14 diag(mod$W)[1 : 3] <-

1 / rgamma(3, shape = shape.theta,

16 rate = rate.theta + 0.5 * SStheta)

## save current iteration, if appropriate

18 if ( !(it %% every) )

{
20 it.save <- it.save + 1

gibbsTheta[, , it.save] <- theta

22 gibbsPhi[it.save, ] <- mod$GG[3 : 4,3]

gibbsVars[it.save, ] <- diag(mod$W)[1 : 3]

24 }
}

The ‘if’ statement on line 18 takes care of the thinning, saving the draw
only when the iteration counter it is divisible by every. The object SStheta
(line 12) is a vector of length 3 containing the sum of squares appearing in
the full conditional distributions of the precisions (equations (4.24)). The two
functions ARfullCond and AR2support, which are the main arguments of arms
(line 5) are defined, inside the main function, as follows.

R code

AR2support <- function(u)

2 {
## stationarity region for AR(2) parameters

4 (sum(u) < 1) && (diff(u) < 1) && (abs(u[2]) < 1)

}
6 ARfullCond <- function(u)

{
8 ## log full conditional density for AR(2) parameters

mod$GG[3 : 4, 3] <- u

10 -dlmLL(y, mod) + sum(dnorm(u, sd = c(2, 1) * 0.33,

log = TRUE))

12 }

The sampler was run using the following call, where gdp is a time series
object containing the data.

R code

outGibbs <- gdpGibbs(gdp, a.theta = 1, b.theta = 1000, n.sample =

2 2050, thin = 1, save.states = TRUE)
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Discarding the first 50 draws as burn in, we look at some simple diagnos-
tic plots. The traces of the simulated variances (Figure 4.13) do not show
any particular sign of a nonstationary behavior. We have also plotted the
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Fig. 4.13. GDP: traces of simulated variances

running ergodic means of the simulated standard deviations σµ σδ, and σu

(Figure 4.14). The first plot shows n−1
∑n
i=1 σ

(i)
µ versus i, and similarly for

the second and third. In other words, this is the MC estimate of σµ versus the
number of iterations of the sampler. The estimates look reasonably stable in
the last part of the plot. (This impression was also confirmed by the results
from a longer run, not shown here). The empirical autocorrelation functions of
the three variances (Figure 4.15) give an idea of the degree of autocorrelation
in the sampler. In the present case, the decay of the ACF is not very fast;
this will reflect in a relatively large Monte Carlo standard error of the Monte
Carlo esimates. Clearly, a smaller standard error can always be achieved by
running the sampler longer. Similar diagnostic plots can be done for the AR
parameters. The reader can find in the display below, for the three standard
deviations in the model and the two AR parameters, the estimates of the
posterior means and their estimated standard errors, obtained using Sokal’s
method (see Section 1.6). In addition, equal-tail 90% probability intervals are
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Fig. 4.14. GDP: ergodic means

derived for the five parameters. These probability intervals give an idea of the
region where most of the posterior probability is contained.

R code

> mcmcMeans(outGibbs$phi[-burn,], names = paste("phi", 1:2))

2 phi 1 phi 2

1.3422 -0.4027

4 ( 0.0112) ( 0.0120)

> apply(outGibbs$phi[-burn,], 2, quantile, probs = c(.05,.95))

6 [,1] [,2]

5% 1.174934 -0.5794382

8 95% 1.518323 -0.2495367

> mcmcMeans(sqrt(outGibbs$vars[-burn,]),

10 names = paste("Sigma", 1:3))

Sigma 1 Sigma 2 Sigma 3

12 0.34052 0.05698 0.78059

(0.03653) (0.00491) (0.01766)

14 > apply(sqrt(outGibbs$vars[-burn,]), 2, quantile,

probs = c(.05,.95))

16 [,1] [,2] [,3]
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Fig. 4.15. GDP: Autocorrelation functions

5% 0.06792123 0.02057263 0.5596150

18 95% 0.65583319 0.12661949 0.9294306

One can also plot histograms based on the output of the sampler, to gain some
insight about the shape of posterior distributions of parameters or functions
thereof—at least for univariate marginal posteriors. Figure 4.16 displays the
histograms of the posterior distributions of the three variances.

Scatterplots are sometimes useful to explore the shape of bivariate distri-
butions, especially for pairs of parameters that are highly dependent on each
other. Figure 4.17 displays a bivariate scatterplot of (φ1, φ2), together with
their marginal histograms. From the picture, it is clear that there is a strong
dependence between φ1 and φ2, which, incidentally, confirms that drawing the
two at the same time was the right thing to do in order to improve the mixing
of the chain.

Finally, since the sampler also included the unobservable states as latent
variables, one can obtain posterior distributions and summaries of the states.
In particular, in this example it is of interest to separate the trend of the GDP
from the (autocorrelated) noise. The posterior mean of the trend at time t

is estimated by the mean of the simulated values θ
(i)
t,1. Figure 4.18 displays
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Fig. 4.16. GDP: posterior distributions of the model variances

graphically the posterior mean of the trend, together with the data, and the
posterior mean of the AR(2) noise process, represented by θt,3.

4.6.2 Dynamic regression

Suppose we have a time series of cross sectional data, (Yi,t, xi,t), i = 1, . . . ,m,
where Yi,t is the value of a response variable Y corresponding to the value xi,t
of one or more covariates X, observed over time. Typically, the interest is in
estimating the regression function mt(x) = E(Yt|x) from the cross-sectional
data, at time t; moreover, one usually wants to make inference on the evolution
of the regression curve over time. In Section 3.3.5 we introduced a dynamic
regression model in the form of DLM for data of this nature. The model is ap-
plied here to a problem of interest in financial applications, namely, estimating
the term structure of interest rates.

The problem is briefly described as follows. Let Pt(x) be the price at time
t of a zero-coupon bond that gives 1 euro at time to maturity x. The curve
Pt(x), x ∈ (0, T ), is called discount function. Other curves of interest are
obtained as one-by-one transformations of the discount function; the yield
curve is γt(x) = − logPt(x)/x, and the instantaneous (nominal) forward rate
curve is ft(x) = d(− logPt(x)/dx) = (dPt(x)/dx)/Pt(x). The yield curve, or
one of its transformations, allows us to price any coupon bond as the sum
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of the present values of future coupon and principal payments. Of course,
the whole curve cannot be observed, but it has to be estimated from the
bond prices observed for a finite number of times-to-maturity, x1, . . . , xm say.
More precisely, at time t we have data (yi,t, xi), i = 1, . . . ,m, where yi,t
is the observed yield corresponding to time-to-maturity xi. Due to market
frictions, yields are subject to measurement error, so that the observed yields
are described by

Yi,t = γt(xi) + vi,t, vi,t
iid∼ N (0, σ2), i = 1, . . . ,m.

Several cross sectional models for the yield curve have been proposed in the
literature; one of the most popular is the Nelson and Siegel (1987) model. In
fact, Nelson and Siegel modeled the forward rate curve, as

ft(x) = β1,t + β2,te
−λx + β3,tλx e

−λx,
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from which the yield curve can be obtained

γt(x) = β1,t + β2,t
1 − e−λx

λx
+ β3,t

(
1 − e−λx

λx
− e−λx

)
.

This model is not linear in the parameters (β1,t, β2,t, β3,t, λ); however, the
decay parameter λ is usually approximated with a fixed value, so that the
model is more simply treated as a linear model in the unknown parameters
β1,t, β2,t, β3,t. Thus, for a fixed value of λ, the model is of the form (3.43),
with k = 3 and

h1(x) = 1, h2(x) =
1 − e−λx

λx
, h3(x) =

(
1 − e−λx

λx
− e−λx

)
.

Consider the data plotted in Figure 3.19, which are monthly yields of US
bonds for m = 17 times-to-maturity from 3 to 120 months, from January
1985 to December 2000; for a detailed description, see Diebold and Li (2006).
These authors used the Nelson and Siegel cross sectional model to fit the yield
curve at time t. In fact, they regard such a model as a latent factor model (see
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Section 3.3.6), with β1,t, β2,t, β3,t playing the role of latent dynamic factors
(long-term, short-term and medium-term factors), also interpreted in terms
of level, slope and curvature of the yield curve. In these terms, λ determines
the maturity at which the loading on the medium-term factor, or curvature,
achieves its maximum; taking 30-months maturity, they fix λ = 0.0609, which
is the value we take here. Given λ, cross-sectional estimates of βt at time t
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Fig. 4.19. MCMC smoothing estimates of the regression coefficients β1,t, β2,t, β3,t

(solid lines: black, darkgray, gray respectively). The dashed lines are the month-by-
month OLS estimates

are obtained by ordinary least squares (OLS), from the cross-sectional data
(y1,t, . . . , ym,t).

R code

> yields <- read.table("Datasets/yields.dat")

2 > y <- yields[1 : 192, 3 : 19]; y <- as.matrix(y)

> x <- c(3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120)

4 > p <- 3; m <- ncol(y); TT <- nrow(y)

> persp(x = x, z = t(y), theta = 40, phi = 30, expand = 0.5,

6 + col = "lightblue", ylab = "time", zlab = "yield",

+ ltheta = 100, shade = 0.75, xlab = "maturity (months)")

8 > ### Cross-sectional model

> lambda <- 0.0609

10 > h2 <- function(x) {(1 - exp(-lambda * x)) / (lambda * x)}
> h3 <- function(x) {((1 - exp(-lambda * x)) / (lambda*x)) -
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Fig. 4.20. Observed and OLS fitted yields curve, at selected dates

12 + exp(-lambda * x)}
> X <- cbind(rep(1, m), h2(x), h3(x))

14 > ## OLS estimates

> betahat <- solve(crossprod(X), crossprod(X, t(y)))

16 > nelsonSiegel <- function(x, beta) {
+ beta[1] + beta[2] * h2(x)+ beta[3] * h3(x)}

18 > month <- 51

> plot(x, y[month, ], xlab = "maturity(months)",

20 + ylab = "yield (percent)", ylim = c(8.9,9.8),

+ main = "yield curve on 3/31/89")

22 > lines(x, nelsonSiegel(x, betahat[, month]))

Month-by-month OLS estimates over time are plotted in Figure 4.19 (dashed

lines). A look at the autocorrelation function of the OLS estimates β̂t and
at the estimated residual variance gives a feeling of their evolution over time
(plots not shown).

R code

> acf(t(betahat))

2 > yfit <- t(X %*% betahat)

> res <- (y - yfit)^2

4 > s2 <- rowSums(res) / (m - p)

> ts.plot(sqrt(s2))



4.6 Further examples 197

The fit of the data is quite good, and the model adapts to the different shapes
of the yield curve over time; see, e.g., Figure 4.20.

However, a dynamic estimate of the yield curve would give a more com-
plete understanding of the problem. To this aim, as discussed in Section 3.3.5,
a DLM can be used, introducing a state equation to describe the evolution
of the regression coefficients. For example, Diebold et al. (2006) consider a
VAR(1) states dynamics, also including the effects of macroeconomic vari-
ables. Petrone and Corielli (2005) propose a DLM where the state equation is
derived from no-arbitrage constraints imposed on the yield curve evolution. In
these papers, estimation of constant unknown parameters in the DLM matri-
ces is obtained by MLE. Instead, here we illustrate Bayesian inference on the
unknown parameters and the states of the model. For simplicity, we model
β1,t, β2,t, β3,t as independent AR(1) processes. More specifically, the DLM we
estimate is

Yt = Fθt + vt, vt ∼ N (0, V ),

θt = Gθt−1 + wt, wt ∼ N (0,W ),
(4.25)

where Yt = (Y1,t, · · · , Ym,t)
′

, θt = (β1,t, β2,t, β3,t)
′

,

F =





1 h2(x1) h3(x1)
1 h2(x2) h3(x2)
...

...
...

1 h2(xm) h3(xm)




,

G = diag(ψ1, ψ2, ψ3)

V = diag(φ−1
y,1, · · · , φ−1

y,m),

W = diag(φ−1
θ,1, φ

−1
θ,2, φ

−1
θ,3).

Note that, while we assumed homoscedastic residuals in the cross sectional
model for at each t, in the DLM above we allow different variances φ−1

y,i , i =
1, . . . ,m for the yields at different times-to-maturity, although they are taken
as time-invariant for simplicity.

As the prior, we assume that the AR parameters in the matrix G are i.i.d.
Gaussian

ψj
indep∼ N (ψ0, τ0), j = 1, 2, 3,

with ψ0 = 0 and τ0 = 1. We do not restrict the ψj to lie in the stationarity
region. For the unknown variances, we use a d-Inverse-Gamma prior as in
Section 4.5.1, so that the precisions have independent Gamma densities

φy,i ∼ G(αy,i, by,i), i = 1, 2, · · · ,m
φθ,j ∼ G(αθ,j , bθ,j), j = 1, . . . , p.

In the implementation below, we use αy,i = 3, by,i = 0.01, i = 1, . . . ,m and
αθ,j = 3, bθ,j = 1, j = 1, . . . , p. These choices correspond to prior guesses



198 4 Models with unknown parameters

E(φ−1
y,i ) = 0.005, Var(φ−1

y,i ) = 0.0052, and E(φ−1
θ,j) = 0.5, Var(φ−1

θ,j) = 0.52 on
the observation and state evolution variances.

The joint posterior of the states and model parameters is approximated by
Gibbs sampling. Sampling the states can be done using the FFBS algorithm.
The full conditionals for the parameters are as follows.

• The full conditional of φθ,j is

φθ,j | . . . ∼ G
(
αθ,j +

T

2
, bθ,j +

1

2
SSθ,j

)
, j = 1, 2, 3

with SSθ,j =
∑T
t=1(θj,t − (Gθt−1)j)

2;
• the full conditional of the precision φyi

is

φy,i| . . . ∼ G
(
αy,i +

T

2
, by,i +

1

2
SSy,i

)
, i = 1, · · · ,m

with SSy,i =
∑T
t=1(yi,t − (Fθt)i)

2;
• the full conditional of the AR parameters ψj is, by the theory of linear

regression with a Normal prior,

ψj | . . . ∼ N (ψj,T , τj,T ), j = 1, 2, 3

where

ψj,T = τj,T

[
φθ,j

T∑

t=1

θj,t−1θj,t +
1

τj,0
ψ0

]

τj,T =

[
1

τ0
+ φθ,j

T∑

t=1

θ2j,t−1

]−1

.

R code

> mod <- dlm(m0 = rep(0, p), C0 = 100 * diag(p),

2 + FF = X, V = diag(m), GG = diag(p), W = diag(p))

> ## Prior hyperparameters

4 > psi0 <- 0; tau0 <- 1

> shapeY <- 3; rateY <- .01

6 > shapeTheta <- 3; rateTheta <- 1

> ## MCMC

8 > MC <- 10000

> gibbsTheta <- array(NA, dim = c(MC, TT + 1, p))

10 > gibbsPsi <- matrix(NA, nrow = MC, ncol = p)

> gibbsV <- matrix(NA, nrow = MC, ncol = m)

12 > gibbsW <- matrix(NA, nrow = MC, ncol = p)

> ## Starting values: as specified by mod

14 > set.seed(3420)

> phi.init <- rnorm(3, psi0, tau0)
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16 > V.init <- 1 / rgamma(1, shapeY, rateY)

> W.init <- 1 / rgamma(1, shapeTheta, rateTheta)

18 > mod$GG <- diag(phi. init)

> mod$V <- diag(rep(V.init, m))

20 > mod$W <- diag(rep(W.init, p))

> ## Gibbs sampler

22 > for (i in 1 : MC)

+ {
24 + ## generate the states by FFBS

+ modFilt <- dlmFilter(y, mod, simplify = TRUE)

26 + theta <- dlmBSample(modFilt)

+ gibbsTheta[i, , ] <- theta

28 + ## generate the W_j

+ theta.center <- theta[-1, ] -

30 + t(mod$GG %*% t(theta[-(TT + 1), ]))

+ SStheta <- apply((theta.center)^2, 2, sum)

32 + phiTheta <- rgamma(p, shape =shapeTheta + TT / 2,

+ rate = rateTheta + SStheta / 2)

34 + gibbsW[i, ] <- 1 / phiTheta

+ mod$W <- diag(gibbsW[i, ])

36 + ## generate the V_i

+ y.center <- y - t(mod$FF %*% t(theta[-1, ]))

38 + SSy <- apply((y.center)^2, 2, sum)

+ gibbsV[i, ] <- 1 / rgamma(m, shape = shapeY + TT / 2,

40 + rate = rateY + SSy / 2)

+ mod$V <- diag(gibbsV[i, ])

42 + ## generate the AR parameters psi_1, psi_2, psi_3

+ psi.AR <- rep(NA, 3)

44 + for (j in 1 : p)

+ {
46 + tau <- 1 / ((1 / tau0) + phiTheta[j] *

+ crossprod(theta[-(TT + 1), j]))

48 + psi <- tau * (phiTheta[j] * t(theta[-(TT + 1), j]) %*%

+ theta[-1, j] + psi0 / tau0)

50 + psi.AR[j] <- rnorm(1, psi, sd = sqrt(tau))

+ }
52 + gibbsPsi[i, ] <- psi.AR

+ mod$GG <- diag(psi.AR)

54 + }

We generate a sample of size 10000 and discard the first 1000 draws as burn
in. Diagnostic plots (not shown) indicate convergence of the MCMC chain.
Below are the MCMC approximations of the posterior expectations of the AR
parameters and unknown variances, with their Monte Carlo standard errors.
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R code

> burn <- 1000

2 > round(mcmcMean(gibbsPsi[-(1 : burn), ]), 4)

V.1 V.2 V.3

4 0.9949 0.9883 0.9135

(0.0000) (0.0001) (0.0003)

6 > round(mcmcMean(sqrt(gibbsW[-(1 : burn), ])), 4)

V.1 V.2 V.3

8 0.3137 0.3220 0.6493

(0.0112) (0.0115) (0.0258)

10 > round(mcmcMean(sqrt(gibbsV[-(1 : burn), ])), 4)

V.1 V.2 V.3 V.4 V.5 V.6

12 0.1450 0.0631 0.0600 0.0851 0.0932 0.0755

(0.0094) (0.0055) (0.0030) (0.0041) (0.0040) (0.0032)

14 V.7 V.8 V.9 V.10 V.11 V.12

0.0565 0.0520 0.0284 0.0469 0.0626 0.0807

16 (0.0027) (0.0021) (0.0017) (0.0023) (0.0026) (0.0031)

V.13 V.14 V.15 V.16 V.17

18 0.0873 0.0665 0.0490 0.0503 0.0837

(0.0032) (0.0027) (0.0026) (0.0030) (0.0034)

The MCMC smoothing estimates of θt = (β1,t, β2,t, β3,t) are plotted in Fig-
ure 4.19. The results are quite close to the OLS month-by-month estimates,
also shown in the plot. However, this is not always the case. Roughly speak-
ing, while the cross-sectional OLS estimates minimize the residual sum of
squares at each t, in the DLM the minimization is subject to the constraints
implied by the state equation. In fact, a poor specification of the state equa-
tion might result in an unsatisfactory fit of the cross-sectional data. Further
developments of this example include a more thoughtful specification of the
state equation, time varying observation and/or evolution variances, and the
inclusion of macroeconomic variables.

4.6.3 Factor models

In this example, we use a factor model (Section 3.3.6) to extract a common
stochastic trend from multiple integrated time series. The basic idea is to
explain fluctuations of various markets or common latent factors that affect a
set of economic or financial variables simultaneously. The data are the federal
funds rate (short rate) and 30-year conventional fixed mortgage rate (long
rate), obtained from Federal Reserve Bank of St. Louis2 (see Chang et al.
(2005)). The series are sampled at weekly intervals over the period April 7,
1971 through September 8, 2004. We will work with the natural logarithm of
one plus the interest rate; the transformed data are plotted in Figure 4.21.

2 Source: http://research.stlouisfed.org/fred2/
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Fig. 4.21. Log of one plus the federal funds rate (FF) and the 30-year mortgage
rate (WMORTG). Weekly data, 1971-2004

R code

> interestRate <- read.table("interestRates.dat",

2 + col.names = c("Long", "Short"))

> y <- log(1 + interestRate / 100)

4 > y <- ts(y, frequency = 52, start = 1971)

> ts.plot(y, lty = c(1, 2), col = c(1, "darkgray"))

6 > legend("topright", legend = c("mortgage rate (long rate)",

+ "federal funds rate (short rate)"),

8 + col = c(1, "darkgray"), lty = c(1,2), bty = "n")

To extract a common stochastic trend in the bivariate time series (Yt =
(Y1,t, Y2,t) : t ≥ 1), we assume the following factor model:

{
Yt = Aµt + µ0 + vt, vt ∼ N (0, V ),

µt = µt−1 + wt, wt ∼ N (0, σ2
µ),

(4.26)

where the 2× 1 matrix A is set to be A =
[
1 α
]′

to ensure identifiability and

µ0 =
[
0 µ̄
]′
. The latent variable µt is interpreted as the common stochastic

trend, here simply modeled as a random walk. In the usual DLM notation the
model can be written in the form
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Yt = Fθt + vt,

θt =

[
1 0
0 1

]
θt−1 +

[
wt
0

]
,

(4.27)

with

θt =
[
µt, µ̄

]
, F =

[
1 0
α 1

]
, V =

[
σ2

1 σ12

σ12 σ2
2

]
, W = diag(σ2

µ, 0).

We use a N (α0, τ
2) prior for α and, as in Sections 4.5.1 and 4.5.2, independent

Gamma and Wishart priors for the precision 1/σ2
µ and V −1,

σ−2
µ ∼ G(a, b), V −1 ∼ W(ν0, S0).

In the specific case illustrated below, we take α0 = 0, τ2 = 16; a and b such
that E(σ−2

µ ) = 0.01 with Var(σ−2
µ ) = 1; ν0 = (δ + 1)/2 = 2 and S0 = V0/2,

where

V0 =

[
1 0.5

0.5 4

]
,

so that E(V ) = V0. The posterior distribution of the states and the parame-
ters, given y0:T , is proportional to

T∏

t=1

N2((y1,t, y2,t); (µt, αµt + µ̄)′, V )N (µ̄;m0,2C0,22)

N (µt;µt−1, σ
2
µ)N (α;α0, τ

2)G(σ−2
µ ; a, b)W(V −1; ν0, S0),

where m0,2 and C0,22 are the prior mean and variance for µ̄. The posterior is
approximated via Gibbs sampling;

• the full conditional of α is N (αT , τ
2
T ), where

τ2
T =

(1 − ρ2)τ2σ2
2

τ2
∑T
t=1 µ

2
t + (1 − ρ2)σ2

2

αT = τ2
T

τ2/σ2

∑T
t=1(

y2,t−µ̄
σ2

− ρ
y1,t−µt

σ1
)µt + α0(1 − ρ2)

τ2 (1 − ρ2)
,

with ρ = σ12/(σ1σ2);
• the full conditional of the precision σ−2

µ is

G
(
a+

T

2
, b+

SSµ
2

)
,

where SSµ =
∑T
t=1(µt − µt−1)

2;
• the full conditional of V −1 is

W
(
δ + 1 + T

2
,
1

2
(V0 +

T∑

t=1

(yt − Fθt)(yt − Fθt)
′

)

)
.
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R code

> # Prior hyperparameters

2 > alpha0 <- 0; tau2 <- 16

> expSigmaMu<- 0.01; varSigmaMu<- 1

4 > a <- (expSigmaMu^2/varSigmaMu)+2; b <- expSigmaMu*(a-1)

> delta <- 3;

6 > V0=matrix(c(1, 0.5, 0.5, 4), byrow=T, nrow=2)

> # Gibbs sampling

8 > MC <- 10000

> n <- nrow(y)

10 > gibbsTheta <- array(0, dim=c(n+1,2,MC-1))

> gibbsV <-array(0, dim=c(2,2,MC))

12 > gibbsAlpha <- rep(0,MC)

> gibbsW <- rep(0,MC)

14 > # model and starting values for the MCMC

> mod <- dlmModPoly(2, dW=c(1,0), C0=100*diag(2))

16 > gibbsAlpha[1] <- 0

> mod$FF <- rbind(c(1,0), c(gibbsAlpha[1],1))

18 > mod$W[1,1] <- gibbsW[1] <- 1/rgamma(1, a, rate=b)

> mod$V <- gibbsV[,,1] <- V0 /(delta-2)

20 > mod$GG <- diag(2)

> # MCMC loop

22 > for(it in 1:(MC-1))

+ {
24 + # generate state- FFBS

+ modFilt <- dlmFilter(y, mod, simplify=TRUE)

26 + gibbsTheta[,,it] <- theta <- dlmBSample(modFilt)

+ # update alpha

28 + <-

+ tauT <- (gibbsV[,,it][2,2]*(1-rho^2)*tau2) /

30 + (tau2 * sum(theta[-1,1]^2)+(1-rho^2)*gibbsV[,,it][2,2])

+ alphaT <- tauT * ((tau2/(gibbsV[,,it][2,2])^.5) *

32 + sum(((y[,2]-theta[-1,2])/gibbsV[,,it][2,2]^.5 -

+ rho* (y[,1]-theta[-1,1])/gibbsV[,,it][1,1]^.5) *

34 + theta[-1,1])+ alpha0*(1-rho^2))/(tau2*(1-rho^2))

+ mod$FF[2,1] <- gibbsAlpha[it+1] <- rnorm(1, alphaT, tauT^.5)

36 + # update sigma_mu

+ SSmu <- sum( diff(theta[,1])^2)

38 + mod$W[1,1] <- gibbsW[it+1] <- 1/rgamma(1, a+n/2, rate=b+SSmu/2)

+ # update V

40 + S <- V0 + crossprod(y- theta[-1,] %*% t(mod$FF))

+ mod$V <- gibbsV[,,it+1] <- solve(rwishart(df=delta+1+ n,

42 + Sigma=solve(S)))

+ }

rho gibbsV[,,it][1,2]/(gibbsV[,,it][1,1]*gibbsV[,,it][2,2]) .̂5
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Fig. 4.22. MCMC estimate of the posterior distribution of α; running ergodic
means; MCMC autocorrelation

We show the results for 10000 MCMC iterations, with a burn in of 5000
draws. Some diagnostic plots are summarized in Figures 4.22-4.23; the first
panel in each figure shows the MCMC approximation of the posterior distri-
bution of α and σµ.

The MCMC estimates of the parameters’ posterior means are given in the
display below, together with the estimated standard errors, obtained by the
dlm function mcmcMeans, and the 5% and 95% quantiles of their marginal
posterior distributions.

parameter α σµ σ1 σ2 σ1,2

posterior mean 1.1027 0.0084 0.0261 0.0512 0.00037
(st dev) (0.0036) (0.00001) (0.00001) (0.00001) (0.0000)

5% quantile 1.0262 0.0079 0.0254 0.0498 0.0003
95% quantile 1.1806 0.0089 0.0269 0.0526 0.00043

Figure 4.24 shows the data and the posterior mean of the common stochas-
tic trend, which results very close to the long rate.
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Fig. 4.23. MCMC estimate of the posterior distribution of σµ; running ergodic
means; MCMC autocorrelation
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Fig. 4.24. Posterior mean of the common stochastic trend
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Problems

4.1. In Chapter 2, we considered a random walk-plus-noise model for the Nile
river data. There, we used the maximum likelihood estimates for the state
and observation variances. Consider now Bayesian inference on the states and
the unknown parameters of the model. Express conjugate priors for V and W
and evaluate the posterior distribution of (θ0:T , V,W |y1:T ). Then, estimate
the model using discount factors as in Sections 4.3.2 and 4.3.3, and compare
the results.

4.2. Consider the DLM described in Section 4.3.1, with conjugate priors. Sup-
pose for simplicity that θt is univariate. Compute the expression of (1 − α)
probability intervals for θt|y1:t. Discuss the results, comparing with the case
where σ2 is known.

4.3. Consider again the Nile data, which we modeled as a random walk plus
noise (see Problem 4.1). In fact, assuming time-invariant variances is too re-
strictive for these data: we expect big changes caused by the dam’s construc-
tion. The model described in Section 4.5.3 allows for outliers and structural
breaks. Provide Bayesian estimates of this model for the Nile data (compute
an MCMC approximation of the joint posterior of the states and unknown
parameters, given y1:T ).

4.4. Show that the posterior distribution (4.20) is invariant for the hybrid
sampler described in Algorithm 4.3.

4.5. A honest elicitation of a prior distribution is often difficult. At least,
one should be aware of the role of prior hyperparameters, and the consequent
sensitivity of inference to the prior assumptions (given the model, which in fact
is also part of the prior assumptions). In Section 4.5.2, we consider an Inverse-
Wishart prior on the random covariance matrix. Suppose that V is a (2 × 2)
random matrix having an Inverse-Wishart distribution with parameters (α =
n/2, B = Σ/2). Study the distribution for varying values of the parameters n
and Σ, and plot the resulting marginal densities.

4.6. Study sensitivity to prior assumptions for the SUTSE model illustrated
in Section 4.5.2.




