
5

Sequential Monte Carlo methods

In Chapter 2 we introduced the filtering recursion for general state space
models (Proposition 2.1). The recursive nature of the algorithm that, from the
filtering distribution at time t−1 and the observation yt computes the filtering
distribution at time t, makes it ideally suited for a large class of applications
in which inference must be made online, before the data collection ends. For
those types of applications one must have, at any time, an up-to-date estimate
of the current state of the system. Standard examples of such online types of
applications include the following: tracking the position and speed of a moving
aircraft observed through a radar; monitoring the location and characteristics
of a storm based on satellite data; estimating the volatility of the prices of a
group of stocks from tick-to-tick data. Unfortunately, for a general state space
model the integrations in (2.7) cannot be carried out analytically. DLMs are
a special case for which the Kalman filter gives a closed form solution to
the filtering problem. However, even in this case, as soon as a DLM contains
unknown parameters in its specification, the Kalman filter alone is not enough
to compute the filtering distribution and, except in a few simple cases (see
Section 4.3.1) one has to resort to numerical techniques.

For off-line, or batch, inference MCMC methods can be successfully em-
ployed for DLMs with unknown parameters, as explained in Chapter 4, and
can be extended to nonlinear non-Gaussian models. However, they are of lim-
ited use for online inference because any time a new observation becomes
available, a totally new Markov chain has to be simulated. In other words, in
an MCMC approach, the output based on t−1 observations cannot be used to
evaluate posterior distributions based on t observations. In this sense, unlike
the Kalman filter, MCMC does not lend itself easily to a sequential usage.

Early attempts to sequentially update filtering distributions for nonlinear
and non-Gaussian state space models were based on some form of linearization
of the state and system equations and on Gaussian approximations (for details
and references, see Cappé et al.; 2007). While useful for mildly nonlinear
models, an approach of this type typically performs poorly for highly nonlinear

© Springer Science + Business Media, LLC 2009
G. Petris et al., Dynamic Linear Models with R, Use R, DOI: b135794_5, 207

208 5 Sequential Monte Carlo methods

models. Furthermore, it does not solve the problem of sequentially estimating
unknown parameters, even in the simple DLM case.

In this chapter we give an account of a relatively recent simulation ap-
proach, called Sequential Monte Carlo, that has proved very successful in on-
line filtering applications of both DLMs with unknown parameters and general
nonlinear non-Gaussian state space models. Sequential Monte Carlo provides
an alternative set of simulation-based algorithms to approximate complicated
posterior distributions. Although not limited to time series models, it has
proved extremely successful when applied to DLMs and more general state
space models—especially in those applications that require frequent updates
of the posterior as new data are observed. Research in sequential Monte Carlo
methods is currently very active and we will not try to give here an exhaustive
review of the field. Instead, we limit ourselves to a general introduction and a
more specific description of a few algorithms that can be easily implemented in
the context of DLMs. For more information the interested reader can consult
the books by Liu (2001), Doucet et al. (2001), Del Moral (2004), and Cappé
et al. (2005). The article by Cappé et al. (2007) provides a current overview
of the field.

5.1 The basic particle filter

Particle filtering, which is how sequential Monte Carlo is usually referred to in
applications to state space models, is easier to understand when viewed as an
extension of importance sampling. For this reason we open this section with
a brief recall of importance sampling.

Suppose one is interested in evaluating the expected value

Eπ(f(X)) =

∫
f(x)π(x) dx. (5.1)

If g is an importance density having the property that g(x) = 0 implies π(x) =
0, then one can write

Eπ(f(X)) =

∫
f(x)

π(x)

g(x)
g(x) dx = Eg(f(X)w⋆(X)),

where w⋆(x) = π(x)/g(x) is the so-called importance function. This suggests
approximating the expected value of interest by generating a random sample
of size N from g and computing

1

N

N∑

i=1

f(x(i))w⋆(x(i)) ≈ Eπ(f(X)). (5.2)

In Bayesian applications one can typically evaluate the target density only up
to a normalizing factor, i.e., only C · π(x) can be computed, for an unknown

5.1 The basic particle filter 209

constant C. Unfortunately, this implies that also the importance function can
only be evaluated up to the same factor C and (5.2) cannot be used directly.
However, letting w̃(i) = Cw⋆(x(i)), if one takes f(x) ≡ C, then (5.2) yields

1

N

N∑

i=1

Cw⋆(x(i)) =
1

N

N∑

i=1

w̃(i) ≈ Eπ(C) = C. (5.3)

Since the w̃(i)’s are available, (5.3) provides a way of evaluating C. Moreover,
for the purpose of evaluating (5.1) one does not need an explicit estimate of
the constant C: in fact,

Eπ(f(X)) ≈ 1

N

N∑

i=1

f(x(i))w⋆(x(i))

=
1
N

∑N
i=1 f(x(i))w̃(i)

C
≈
∑N
i=1 f(x(i))w̃(i)

∑N
i=1 w̃

(i)

=

N∑

i=1

f(x(i))w(i),

with w(i) = w̃(i)/
∑N
j=1 w̃

(j). Note that: (1) the weights w(i) sum to one,

and (2) the approximation Eπ(f(X)) ≈ ∑N
i=1 f(x(i))w(i) holds for every

well-behaved function f . Therefore, the sample x(1), . . . , x(N) with the as-
sociated weights w(1), . . . , w(N) can be viewed as a discrete approximation of
the target π. In other words, writing δx for the unit mass at x, and setting
π̂ =

∑N
i=1 w

(i)δx(i) , one has π ≈ π̂.
In filtering applications, the target distribution changes every time a new

observation is made, moving from π(θ0:t−1|y1:t−1) to π(θ0:t|y1:t). Note that
the former is not a marginal distribution of the latter, even though θ0:t−1 are
the first components of θ0:t. The problem then is how to efficiently update
a discrete approximation of π(θ0:t−1|y1:t−1) when the observation yt becomes
available, in order to obtain a discrete approximation of π(θ0:t|y1:t). For ev-
ery s, let us denote1 by π̂s(θ0:s|y1:s) the approximation of π(θ0:s|y1:s). The

updating process consists of two steps: for each point θ
(i)
0:t−1 in the support

of π̂t−1, (1) draw an additional component θ
(i)
t to obtain θ

(i)
0:t and, (2) up-

date its weight w
(i)
t−1 to an appropriate w

(i)
t . The weighted points (θ

(i)
t , w

(i)
t),

i = 1, . . . , N , provide the new discrete approximation π̂t. For every t, let gt be
the importance density used to generate θ0:t. Since at time t the observations
y1:t are available, gt may depend on them and we will write gt(θ0:t|y1:t) to
make the dependence explicit. We assume that gt can be expressed in the
following form:

1 We keep the index s in the notation π̂s because approximations at different times
can be in principle unrelated to one another, while the targets are all derived
from the unique distribution of the process {θi, yj : i ≥ 0, j ≥ 1}.

210 5 Sequential Monte Carlo methods

gt(θ0:t|y1:t) = gt|t−1(θt|θ0:t−1, y1:t) · gt−1(θ0:t−1|y1:t−1).

This allows us to “grow” sequentially θ0:t by combining θ0:t−1, drawn from
gt−1 and available at time t − 1, and θt, generated at time t from
gt|t−1(θt|θ0:t−1, y1:t). We will call the functions gt|t−1 importance transition
densities. Note that only the importance transition densities are needed to
generate θ0:t. Suggestions about the selection of the importance density are
provided at the end of the section. Let us consider next how to update the
weights. One has, dropping the superscripts for notational simplicity:

wt ∝
π(θ0:t|y1:t)
gt(θ0:t|y1:t)

∝ π(θ0:t, yt|y1:t−1)

gt(θ0:t|y1:t)

∝ π(θt, yt|θ0:t−1, y1:t−1) · π(θ0:t−1|y1:t−1)

gt|t−1(θt|θ0:t−1, y1:t) · gt−1(θ0:t−1|y1:t−1)

∝ π(yt|θt) · π(θt|θt−1)

gt|t−1(θt|θ0:t−1, y1:t)
· wt−1.

Hence, for every i, after drawing θ
(i)
t from gt|t−1(θt|θ(i)0:t−1, y1:t), one can com-

pute the unnormalized weight w̃
(i)
t as

w̃
(i)
t = w

(i)
t−1 ·

π(yt|θ(i)t) · π(θ
(i)
t |θ(i)t−1)

gt|t−1(θ
(i)
t |θ(i)0:t−1, y1:t)

. (5.4)

The fraction on the left-hand side of equation (5.4), or any quantity propor-
tional2 to it, is called the incremental weight. The final step in the updating
process consists in scaling the unnormalized weights:

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

.

In practice it is often the case that, after a number of updates have been
performed, a few points in the support of π̂t have relatively large weights, while
all the remaining have negligible weights. This clearly leads to a deterioration
in the Monte Carlo approximation. To keep this phenomenon in control, a
useful criterion to monitor over time is the effective sample size, defined as

Neff =

(
N∑

i=1

(
w

(i)
t

)2
)−1

,

which ranges between N (when all the weights are equal) and one (when one
weight is equal to one). When Neff falls below a threshold N0, it is advisable

2 The proportionality constant may depend on y1:t, but should not depend on θ
(i)
t

or θ
(i)
0:t−1 for any i.

5.1 The basic particle filter 211

0. Initialize: draw θ
(1)
0 , . . . , θ

(N)
0 independently from π(θ0) and set

w
(i)
0 = N

−1
, i = 1, . . . , N.

1. For t = 1, . . . , T:
1.1) For i = 1, . . . , N:

• Draw θ
(i)
t from gt|t−1(θt|θ

(i)
0:t−1, y1:t) and set

θ
(i)
0:t = (θ

(i)
0:t−1, θ

(i)
t)

.

• Set

w̃
(i)
t = w

(i)
t−1 ·

π(θ
(i)
t , yt|θ

(i)
t−1)

gt|t−1(θ
(i)
t |θ(i)0:t−1, y1:t)

.

1.2) Normalize the weights:

w
(i)
t =

w̃
(i)
t

PN

j=1 w̃
(j)
t

.

1.3) Compute

Neff =

N
X

i=1

`

w
(i)
t

´2

!−1

.

1.4) If Neff < N0, resample:

• Draw a sample of size N from the discrete distribution

P
`

θ0:t = θ
(i)
0:t

´

= w
(i)
t , i = 1, . . . , N,

and relabel this sample

θ
(1)
0:t , . . . , θ

(N)
0:t .

• Reset the weights: w
(i)
t = N−1, i = 1, . . . , N.

1.5) Set π̂t =
PN

i=1 w
(i)
t δ

θ
(i)
0:t

.

Algorithm 5.1: Summary of the particle filter algorithm

to perform a resampling step. This can be done in several different ways.
The simplest, called multinomial resampling, consists of drawing a random
sample of size N from π̂t and using the sampled points, with equal weights,
as the new discrete approximation of the target. The resampling step does
not change the expected value of the approximating distribution π̂t, but it
increases its Monte Carlo variance. In trying to keep the variance increase
as small as possible, researchers have developed other resampling algorithms,
more efficient than multinomial resampling in this respect. Of these, one of
the most commonly used is residual resampling. It consists of creating, for

212 5 Sequential Monte Carlo methods

i = 1, . . . , N , ⌊Nw(i)
t ⌋ copies of θ

(i)
0:t deterministically first, and then adding

Ri copies of θ
(i)
0:t, where (R1, . . . , RN) is a random vector having a multinomial

distribution. The size and probability parameters are given by N −M and
(w̄(1), . . . , w̄(N)) respectively, where

M =

N∑

i=1

⌊Nw(i)
t ⌋,

w̄(i) =
Nw

(i)
t − ⌊Nw(i)

t ⌋
N −M

, i = 1, . . . , N.

Algorithm 5.1 contains a summary of the basic particle filter. Let us stress
once again the sequential character of the algorithm. Each pass of the out-
ermost “for” loop represents the updating from π̂t−1 to π̂t following the ob-
servation of the new data point yt. Therefore, at any time t ≤ T one has a
working approximation π̂t of the current filtering distribution.

At time t, a discrete approximation of the filtering distribution π(θt|y0:t)
is immediately obtained as a marginal distribution of π̂t. More specifically, if
π̂t =

∑N
i=1 w

(i)δ
θ
(i)
0:t

, we only need to discard the first t components of each

path θ
(i)
0:t, leaving only θ

(i)
t , to obtain

π(θt|y1:t) ≈
N∑

i=1

w(i)δ
θ
(i)
t

.

As a matter of fact, particle filter is most frequently viewed, as the name itself
suggests, as an algorithm to update sequentially the filtering distribution. Note
that, as long as the transition densities gt|t−1 are Markovian, the incremental

weights in (5.4) only depend on θ
(i)
t and θ

(i)
t−1, so that, if the user is only

interested in the filtering distribution, the previous components of the path

θ
(i)
0:t can be safely discarded. This clearly translates into substantial savings

in terms of storage space. Another, more fundamental, reason to focus on
the filtering distribution is that the discrete approximation provided by π̂t is
likely to be more accurate for the most recent components of θ0:t than for the
initial ones. To see why this is the case, consider, for a fixed s < t, that the

θ
(i)
s ’s are generated at a time when only y0:s is available, so that they may

well be far from the center of their smoothing distribution π(θs|y0:t), which is
conditional on t− s additional observations.

We conclude this section with practical guidelines to follow in the selec-
tion of the importance transition densities. In the context of DLMs, as well
as for more general state space models, two are the most used importance
transition densities. The first is gt|t−1(θt|θ0:t−1, y1:t) = π(θt|θt−1), i.e., the ac-
tual transition density of the Markov chain of the states. It is clear that in

5.1 The basic particle filter 213

this way all the particles are drawn from the prior distribution of the states,
without accounting for any information provided by the observations. The
simulation of the particles and the calculation of the incremental weights are
straightforward. However, most of the times the generated particles will fall
in regions of low posterior density. The consequence will be an inaccurate dis-
crete representation of the posterior density and a high Monte Carlo variance
for the estimated posterior expected values. For these reasons we discourage
the use of the prior as importance density. A more efficient approach, which
accounts for the observations in the importance transition densities, consists
of generating θt from its conditional distribution given θt−1 and yt. This dis-
tribution is sometimes referred to as the optimal importance kernel. In view
of the conditional independence structure of the model, this is the same as
the conditional distribution of θt given θ0:t−1 and y1:t. Therefore, in this way
one is generating θt from the target (conditional) distribution. However, since

θt−1 was not drawn from the current target, the particles θ
(i)
0:t are not draws

from the target distribution3 and the incremental importance weights need
to be evaluated. Applying standard results about Normal models, it is easily
seen that for a DLM the optimal importance kernel gt|t−1 is a Normal density
with mean and variance given by

E(θt|θt−1, yt) = Gtθt−1 +WtF
′
tΣ

−1
t (yt − FtGgθt−1),

Var(θt|θt−1, yt) = Wt −WtF
′
tΣ

−1
t FtWt,

where Σt = FtWtF
′
t + Vt. Note that for time-invariant DLMs the conditional

variance above does not depend on t and can therefore be computed once and
for all at the beginning of the process. The incremental weights, using this
importance transition density, are proportional to the conditional density of

yt given θt−1 = θ
(i)
t−1, i.e., to the N (FtGtθ

(i)
t−1, Σt) density, evaluated at yt.

5.1.1 A simple example

To illustrate the practical usage of the basic particle filter described in the
previous section and to assess its accuracy, we present here a very simple ex-
ample based on 100 observations simulated from a known DLM. The data are
generated from a local level model with system variance W = 1, observation
variance V = 2, and initial state distribution N (10, 9). We save the obser-
vations in y. Note the use of dlmForecast to simulate from a given model.

R code

> ### Generate data

2 > mod <- dlmModPoly(1, dV = 2, dW = 1, m0 = 10, C0 = 9)

3 The reason for this apparent paradox is that the target distribution changes from
time t− 1 to time t. When one generates θt−1, the observation yt is not used.

214 5 Sequential Monte Carlo methods

> n <- 100

4 > set.seed(23)

> simData <- dlmForecast(mod = mod, nAhead = n, sampleNew = 1)

6 > y <- simData$newObs[[1]]

In our implementation of the particle filter we set the number of particles
to 1000, and we use the optimal importance kernel as importance transition
density. As discussed in the previous section, for a DLM this density is easy to
use both in terms of generating from it and for updating the particle weights.
To keep things simple, instead of the more efficient residual resampling, we
use plain multinomial resampling, setting the threshold for a resampling step
to 500—that is, whenever the effective sample size drops below one half of the
number of particles, we resample.

R code

> ### Basic Particle Filter - optimal importance density

2 > N <- 1000

> N_0 <- N / 2

4 > pfOut <- matrix(NA_real_, n + 1, N)

> wt <- matrix(NA_real_, n + 1, N)

6 > importanceSd <- sqrt(drop(W(mod) - W(mod)^2 /

+ (W(mod) + V(mod))))

8 > predSd <- sqrt(drop(W(mod) + V(mod)))

> ## Initialize sampling from the prior

10 > pfOut[1,] <- rnorm(N, mean = m0(mod), sd = sqrt(C0(mod)))

> wt[1,] <- rep(1/N, N)

12 > for (it in 2 : (n + 1))

+ {
14 + ## generate particles

+ means <- pfOut[it - 1,] + W(mod) *

16 + (y[it - 1] - pfOut[it - 1,]) / (W(mod) + V(mod))

+ pfOut[it,] <- rnorm(N, mean = means, sd = importanceSd)

18 + ## update the weights

+ wt[it,] <- dnorm(y[it - 1], mean = pfOut[it - 1,],

20 + sd = predSd) * wt[it - 1,]

+ wt[it,] <- wt[it,] / sum(wt[it,])

22 + ## resample, if needed

+ N.eff <- 1 / crossprod(wt[it,])

24 + if (N.eff < N_0)

+ {
26 + ## multinomial resampling

+ index <- sample(N, N, replace = TRUE, prob = wt[it,])

28 + pfOut[it,] <- pfOut[it, index]

+ wt[it,] <- 1 / N

5.1 The basic particle filter 215

30 + }
+ }

For a completely specified DLM the Kalman filter can be used to derive
exact filtering means and variances. In Figure 5.1 we compare the exact fil-

m
t

0 20 40 60 80 100

1
0

1
5

2
0

Kalman

Particle

C
t

0 20 40 60 80 100

0
.9

1
.0

1
.1

1
.2

1
.3

Kalman

Particle

Fig. 5.1. Top: comparison of filtering state estimates computed with the Kalman fil-
ter and particle filter. Bottom: comparison of filtering standard deviations computed
with the Kalman filter and particle filter

tering means and standard deviations, obtained using the Kalman filter, with
the Monte Carlo approximations of the same quantities obtained using the
particle filter algorithm. In terms of the filtering mean, the particle filter gives
a very accurate approximation at any time (the two lines are barely distin-
guishable). The approximations to the filtering standard deviations are less
precise, although reasonably close to the true values. The precision can be
increased by increasing the number of particles in the simulation. The plots
were obtained with the following code.

R code

> ## Compare exact filtering distribution with PF approximation

2 > modFilt <- dlmFilter(y, mod)

> thetaHatKF <- modFilt$m[-1]

4 > sdKF <- with(modFilt, sqrt(unlist(dlmSvd2var(U.C, D.C))))[-1]

> pfOut <- pfOut[-1,]

6 > wt <- wt[-1,]

> thetaHatPF <- sapply(1 : n, function(i)

8 + weighted.mean(pfOut[i,], wt[i,]))

> sdPF <- sapply(1 : n, function(i)

216 5 Sequential Monte Carlo methods

10 + sqrt(weighted.mean((pfOut[i,] -

+ thetaHatPF[i])^2, wt[i,])))

12 > plot.ts(cbind(thetaHatKF, thetaHatPF),

+ plot.type = "s", lty = c("dotted", "longdash"),

14 + xlab = "", ylab = expression(m[t]))

> legend("topleft", c("Kalman", "Particle"),

16 + lty = c("dotted", "longdash"), bty = "n")

> plot.ts(cbind(sdKF, sdPF), plot.type = "s",

18 + lty = c("dotted", "longdash"), xlab = "",

+ ylab = expression(sqrt(C[t])))

20 > legend("topright", c("Kalman", "Particle"),

+ lty = c("dotted", "longdash"), bty = "n")

5.2 Auxiliary particle filter

The particle filter described in the previous section applies to general state
space models. However, its performance depends heavily on the specification of
the importance transition densities. While for a DLM the optimal importance
kernel can be obtained explicitely and its use typically provides fairly good
approximations to the filtering distributions, for a general state space model
this is not the case, and devising effective importance transition densities is
a much harder problem. The auxiliary particle filter algorithm was proposed
by Pitt and Shephard (1999) to overcome this difficulty. While not really
needed for fully specified DLMs, an extension of the algorithm, due to Liu
and West (2001), turns out to be very useful even in the DLM case when
the model contains unknown parameters. For this reason we present Pitt and
Shephard’s auxiliary particle filter here, followed in the next section by Liu
and West’s extension to deal with unknown model parameters.

Suppose that at time t−1 a discrete approximation π̂t−1 =
∑N
i=1 w

(i)
t−1δθ(i)

0:t−1

to the joint smoothing distribution π(θ0:t−1|y1:t−1) is available. The goal is
to update the approximate smoothing distribution when a new data point is
observed or, in other words, to obtain a discrete approximation π̂t to the joint
smoothing distribution at time t, π(θ0:t|y1:t). We have:

π(θ0:t|y1:t) ∝ π(θ0:t, yt|y1:t−1)

= π(yt|θ0:t, y1:t−1) · π(θt|θ0:t−1, y1:t−1) · π(θ0:t−1|y1:t−1)

= π(yt|θt) · π(θt|θt−1) · π(θ0:t−1|y1:t−1)

≈ π(yt|θt) · π(θt|θt−1) · π̂t−1(θ0:t−1)

=

N∑

i=1

w
(i)
t−1π(yt|θt)π(θt|θ(i)t−1)δθ(i)

0:t−1

.

5.2 Auxiliary particle filter 217

Note that the last expression is an unnormalized distribution for θ0:t, which
is discrete in the first t components and continuous in the last, θt. This distri-
bution, which approximates π(θ0:t|y1:t), can be taken to be our target for an
importance sampling step. The target being a mixture distribution, a stan-
dard approach to get rid of the summation is to introduce a latent variable I,
taking values in {1, . . . , N}, such that:

P(I = i) = w
(i)
t−1,

θ0:t|I = i ∼ Cπ(yt|θt)π(θt|θ(i)t−1)δθ(i)
0:t−1

.

Thus extended, the target becomes

πaux(θ0:t, i|y1:t) ∝ w
(i)
t−1π(yt|θt)π(θt|θ(i)t−1)δθ(i)

0:t−1

.

The importance density suggested by Pitt and Shephard for this target is

gt(θ0:t, i|y1:t) ∝ w
(i)
t−1π(yt|θ̂(i)t)π(θt|θ(i)t−1)δθ(i)

0:t−1

,

where θ̂
(i)
t is a central value, such as the mean or the mode, of π(θt|θt−1 =

θ
(i)
t−1). A sample from gt is easily obtained by iterating, for k = 1, . . . , N , the

following two steps.

1. Draw a classification variable Ik, with

P(Ik = i) ∝ w
(i)
t−1π(yt|θ̂(i)t), i = 1, . . . , N.

2. Given Ik = i, draw

θ
(k)
t ∼ π(θt|θ(i)t−1)

and set θ
(k)
0:t = (θ

(i)
0:t−1, θ

(k)
t).

The importance weight of the kth draw from gt is proportional to

w̃
(k)
t =

w
(Ik)
t−1π(yt|θ(k)t)π(θ

(k)
t |θ(k)t−1)

w
(Ik)
t−1π(yt|θ̂(k)t)π(θ

(k)
t |θ(k)t−1)

=
π(yt|θ(k)t)

π(yt|θ̂(k)t)
.

After normalizing the w̃
(k)
t ’s and discarding the classification variables Ik’s, we

finally obtain the discrete approximation to the joint smoothing distribution
at time t:

π̂t(θ0:t) =

N∑

i=1

w
(i)
t δ

θ
(i)
0:t

≈ π(θ0:t|y1:t).

As with the standard algorithm of Section 5.1, a resampling step is commonly
applied in case the effective sample size drops below a specified threshold. A
summary of the auxiliary particle filter is provided in Algorithm 5.2

218 5 Sequential Monte Carlo methods

0. Initialize: draw θ
(1)
0 , . . . , θ

(N)
0 independently from π(θ0) and set

w
(i)
0 = N

−1
, i = 1, . . . , N.

1. For t = 1, . . . , T:
1.1) For k = 1, . . . , N:

• Draw Ik, with P(Ik = i) ∝ w
(i)
t−1π(yt|θ̂

(i)
t).

• Draw θ
(k)
t from π(θt|θt−1 = θ

(Ik)
t−1) and set

θ
(k)
0:t =

`

θ
(Ik)
0:t−1, θ

(k)
t

´

.

• Set

w̃
(k)
t =

π(yt|θ
(k)
t)

π(yt|θ̂
(k)
t)

.

1.2) Normalize the weights:

w
(i)
t =

w̃
(i)
t

PN

j=1 w̃
(j)
t

.

1.3) Compute

Neff =

N
X

i=1

`

w
(i)
t

´2

!−1

.

1.4) If Neff < N0, resample:

• Draw a sample of size N from the discrete distribution

P
`

θ0:t = θ
(i)
0:t

´

= w
(i)
t , i = 1, . . . , N,

and relabel this sample

θ
(1)
0:t , . . . , θ

(N)
0:t .

• Reset the weights: w
(i)
t = N−1, i = 1, . . . , N.

1.5) Set π̂t =
PN

i=1 w
(i)
t δ

θ
(i)
0:t

.

Algorithm 5.2: Summary of the auxiliary particle filter algorithm

The main advantage of the auxiliary particle filter over the simple direct
algorithm described in the previous section consists in the fact that it allows to
use the one-step prior distribution π(θt|θt−1) to draw θt without losing much
efficiency. Loosely speaking, when drawing from gt, the role of the first step is
to preselect a conditioning θt−1 that is likely to evolve into a highly plausible θt
in light of the new observation yt. In this way possible conflicts between prior—
π(θt|θt−1)—and likelihood—π(yt|θt)—are minimized. It should be emphasized
that for a general state space model deriving and drawing from the optimal
instrumental kernel is often unfeasible, unlike in the DLM case, while the

5.3 Sequential Monte Carlo with unknown parameters 219

prior distribution is almost always available. Therefore, the ingenious use of
the latter done by the auxiliary particle filter algorithm combines efficiency
and simplicity.

5.3 Sequential Monte Carlo with unknown parameters

In real applications the model almost invariably contains unknown parameters
that need to be estimated from the data. Denoting again by ψ the vector
of unknown parameters, the target distribution at time t for a sequential
Monte Carlo algorithm is therefore in this case π(θ0:t, ψ|y1:t). As detailed
in Section 4.4, a (weighted) sample from the forecast distributions can be
easily obtained once a (weighted) sample from the joint posterior distribution
is available. On the other hand, the filtering distribution and the posterior
distribution of the parameter can be trivially obtained by marginalization.
A simple-minded approach to sequential Monte Carlo for a model with an
unknown parameter is to extend the state vector to include ψ as part of
it, defining the trivial dynamics ψt = ψt−1 (= ψ). In this way a relatively
simple DLM typically becomes a nonlinear and nonnormal state space model.
However, the most serious drawback is that, applying the general algorithm

of Section 5.1 (or the auxiliary particle filter of Section 5.2), the values ψ
(i)
t ,

i = 1, . . . , N , are those drawn at time t = 0, since there is no evolution for

this fictitious state. In other words, ψ
(i)
t = ψ

(i)
0 for every i and t, so that the

ψ
(i)
t ’s, drawn from the prior distribution, are typically not representative of

the posterior distribution at a later time t > 0. It is true that, as the particle
filter algorithm is sequentially applied, the weights are adjusted to reflect the
changes of the target distributions. However, this can only account for the

relative weights: if the ψ
(i)
t ’s happen to be all in the tails of the marginal

target π(ψ|y1:t), the discrete approximation provided by the algorithm will
always be a poor one. There is, in view of the previous considerations, a need
to “refresh” the sampled values of ψ in order to follow the evolution of the
posterior distribution. This can be achieved by discarding the current values of
ψ each time the target changes and generating new ones. Among the different
available methods, probably the most commonly used is the one proposed by
Liu and West (2001) and described below, which extends the auxiliary particle
filter. Fearnhead (2002), Gilks and Berzuini (2001) and Storvik (2002) propose
interesting alternative algorithms.

The idea of Liu and West essentially consists of constructing an approxi-
mate target distribution at time t that is continuous not only in θt, but also
in ψ, so that using importance sampling one draws values of ψ from a contin-
uous importance density, effectively forgetting about the values of ψ used in
the discrete approximation at time t−1. Consider the discrete approximation
available at time t− 1:

220 5 Sequential Monte Carlo methods

π̂t−1(θ0:t−1, ψ) =

N∑

i=1

w
(i)
t−1δ(θ(i)

0:t−1,ψ
(i))

≈ π(θ0:t−1, ψ|y0:t−1).

Marginally,

π̂t−1(ψ) =

N∑

i=1

w
(i)
t−1δψ(i) ≈ π(ψ|y0:t−1). (5.5)

Liu and West suggest replacing each point mass δψ(i) with a Normal distri-
bution, so that the resulting mixture becomes a continuous distribution. A
naive way of doing so would be to replace δψ(i) with a Normal centered at

ψ(i). However, while preserving the mean, this would increase the variance of
the approximating distribution. To see that this is the case, let ψ̄ and Σ be
the mean vector and variance matrix of ψ under π̂t−1, and let

π̃t−1(ψ) =

N∑

i=1

w
(i)
t−1N (ψ;ψ(i), Λ).

Introducing a latent classification variable I for the component of the mixture
an observation comes from, we have

E(ψ) = E(E(ψ|I)) = E(ψ(I))

=

N∑

i=1

w
(i)
t−1ψ

(i) = ψ̄;

Var(ψ) = E(Var(ψ|I)) + Var(E(ψ|I))
= E(Λ) + Var(ψ(I))

= Λ+Σ > Σ,

where expected values and variances are with respect to π̃t−1. However, by
changing the definition of π̃t−1 to

π̃t−1(ψ) =
N∑

i=1

w
(i)
t−1N (ψ;m(i), h2Σ),

with m(i) = aψ(i) + (1 − a)ψ̄ for some a in (0, 1) and a2 + h2 = 1, we have

E(ψ) = E(E(ψ|I)) = E(aψ(I) + (1 − a)ψ̄)

= aψ̄ + (1 − a)ψ̄ = ψ̄;

Var(ψ) = E(Var(ψ|I)) + Var(E(ψ|I))
= E(h2Σ) + Var(aψ(I) + (1 − a)ψ̄)

= h2Σ + a2Var(ψ(I)) = h2Σ + a2Σ = Σ.

Thus, ψ has the same first and second moment under π̃t−1 and π̂t−1. Albeit
this is true for any a in (0, 1), in practice Liu and West recommend to set

5.3 Sequential Monte Carlo with unknown parameters 221

a = (3δ − 1)/(2δ) for a “discount factor” δ in (0.95, 0.99), which corresponds
to an a in (0.974, 0.995). The very same idea can be applied even in the
presence of θ0:t−1 to the discrete distribution π̂t−1(θ0:t−1, ψ), leading to the
extension of π̃t−1 to a joint distribution for θ0:t−1 and ψ:

π̃t−1(θ0:t−1, ψ) =

N∑

i=1

w
(i)
t−1N (ψ;m(i), h2Σ)δ

θ
(i)
0:t−1

.

Note that π̃t−1 is discrete in θ0:t−1, but continuous in ψ. From this point
onward, the method parallels the development of the auxiliary particle filter.
After the new data point yt is observed, the distribution of interest becomes

π(θ0:t, ψ|y1:t) ∝ π(θ0:t, ψ, yt|y1:t−1)

= π(yt|θ0:t, ψ, y1:t−1) · π(θt|θ0:t−1, ψ, y1:t−1) · π(θ0:t−1, ψ|y1:t−1)

= π(yt|θt, ψ) · π(θt|θt−1, ψ) · π(θ0:t−1, ψ|y1:t−1)

≈ π(yt|θt, ψ) · π(θt|θt−1, ψ) · π̃t−1(θ0:t−1, ψ)

=

N∑

i=1

w
(i)
t−1π(yt|θt, ψ)π(θt|θ(i)t−1, ψ)N (ψ;m(i), h2Σ)δ

θ
(i)
0:t−1

.

Similarly to what we did in Section 5.2, we can introduce an auxiliary classi-
fication variable I such that:

P(I = i) = w
(i)
t−1,

θ0:t, ψ|I = i ∼ Cπ(yt|θt, ψ)π(θt|θ(i)t−1, ψ)N (ψ;m(i), h2Σ)δ
θ
(i)
0:t−1

.

Note that the conditional distribution in the second line is continuous in θt and
ψ, and discrete in θ0:t−1—in fact, degenerate on θ

(i)
0:t−1. With the introduction

of the random variable I, the auxiliary target distribution for the importance
sampling update becomes

πaux(θ0:t, ψ, i|y1:t) ∝ w
(i)
t−1π(yt|θt, ψ)π(θt|θ(i)t−1, ψ)N (ψ;m(i), h2Σ)δ

θ
(i)
0:t−1

.

As an importance density, a convenient choice is

gt(θ0:t, ψ, i|y1:t) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = m(i))π(θt|θ(i)t−1, ψ)

N (ψ;m(i), h2Σ)δ
θ
(i)
0:t−1

,

where θ̂
(i)
t is a central value, such as the mean or the mode, of π(θt|θt−1 =

θ
(i)
t−1, ψ = m(i)). A sample from gt can be obtained by iterating, for k =

1, . . . , N , the following three steps.

1. Draw a classification variable Ik, with

P(Ik = i) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = m(i)), i = 1, . . . , N.

222 5 Sequential Monte Carlo methods

2. Given Ik = i, draw ψ ∼ N (m(i), h2Σ) and set ψ(k) = ψ.
3. Given Ik = i and ψ = ψ(k), draw

θ
(k)
t ∼ π(θt|θt−1 = θ

(i)
t−1, ψ = ψ(k))

and set θ
(k)
0:t = (θ

(i)
0:t−1, θ

(k)
t).

The importance weight of the kth draw from gt is proportional to

w̃
(k)
t =

w
(Ik)
t−1π(yt|θt = θ

(k)
t , ψ = ψ(k))π(θ

(k)
t |θ(k)t−1, ψ

(k))N (ψ(k);m(Ik), h2Σ)

w
(Ik)
t−1π(yt|θt = θ̂

(Ik)
t , ψ = m(Ik))π(θ

(k)
t |θ(k)t−1, ψ

(k))N (ψ(k);m(Ik), h2Σ)

=
π(yt|θt = θ

(k)
t , ψ = ψ(k))

π(yt|θt = θ̂
(Ik)
t , ψ = m(Ik))

.

Renormalizing the weights, we obtain the approximate joint posterior distri-
bution at time t

π̂t(θ0:t, ψ) =

N∑

i=1

w
(i)
t δ

(θ
(i)
0:t,ψ

(i))
≈ π(θ0:t, ψ|y1:t).

As was the case with the particle filter algorithms described in the previous
sections, also in this case a resampling step can be applied whenever the
effective sample size drops below a specified threshold. Algorithm 5.3 provides
a convenient summary of the procedure.

Let us point out that, in order for the mixture of normals approximation
of the posterior distribution at time t − 1 to make sense, the parameter ψ
has to be expressed in a form that is consistent with such a distribution—in
particular, the support of a one-dimensional parameter must be the entire
real line. For example, variances can be parametrized in terms of their log,
probabilities in terms of their logit, and so on. In other words, and according
to the suggestion by Liu and West, each parameter must be transformed so
that the support of the distribution of the transformed parameter is the entire
real line. A simpler alternative is to use a mixture of nonnormal distributions,
appropriately selected so that their support is the same as that of the dis-
tribution of the parameter. For example, if a model parameter represents an
unknown probability, and therefore its support is the interval (0, 1), then one
can consider approximating the discrete distribution obtained by the particle
filter at time t−1 with a mixture of beta distributions instead of a mixture of
normals, proceeding in all other respects as described above. Let us elaborate
more on this simple example. Suppose ψ is an unknown parameter in (0, 1).
Denote by µ(α, β) and σ2(α, β) respectively the mean and variance of a beta
distribution with parameters α and β. One can set, for each i = 1, . . . , N ,

µ(i) = µ(α(i), β(i)) = aψ(i) + (1 − a)ψ̄,

σ2(i)
= σ2(α(i), β(i)) = h2Σ,

(5.6)

5.3 Sequential Monte Carlo with unknown parameters 223

0. Initialize: draw (θ
(1)
0 , ψ(1)), . . . , (θ

(N)
0 , ψ(N)) independently from

π(θ0)π(ψ). Set w
(i)
0 = N−1, i = 1, . . . , N, and

π̂0 =
N
X

i=1

w
(i)
0 δ

(θ
(i)
0 ,ψ(i))

.

1. For t = 1, . . . , T:
1.1) Compute ψ̄ = Eπ̂t−1(ψ) and Σ = Varπ̂t−1(ψ). For i = 1, . . . , N, set

m
(i) = aψ

(i) + (1 − a)ψ̄,

θ̂
(i)
t = E(θt|θt−1 = θ

(i)
t−1, ψ = m

(i)).

1.2) For k = 1, . . . , N:

• Draw Ik, with P(Ik = i) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = m(i)).

• Draw ψ(k) from N (m(Ik), h2Σ).

• Draw θ
(k)
t from π(θt|θt−1 = θ

(Ik)
t−1 , ψ = ψ(k)) and set

θ
(k)
0:t =

`

θ
(Ik)
0:t−1, θ

(k)
t

´

.

• Set

w̃
(k)
t =

π(yt|θt = θ
(k)
t , ψ = ψ(k))

π(yt|θt = θ̂
(Ik)
t , ψ = m(Ik))

.

1.3) Normalize the weights:

w
(i)
t =

w̃
(i)
t

PN

j=1 w̃
(j)
t

.

1.4) Compute

Neff =

N
X

i=1

`

w
(i)
t

´2

!−1

.

1.5) If Neff < N0, resample:

• Draw a sample of size N from the discrete distribution

P
`

(θ0:t, ψ) = (θ
(i)
0:t, ψ

(i))
´

= w
(i)
t , i = 1, . . . , N,

and relabel this sample

(θ
(1)
0:t , ψ

(1)), . . . , (θ
(N)
0:t , ψ

(N)).

• Reset the weights: w
(i)
t = N−1, i = 1, . . . , N.

1.6) Set π̂t =
PN

i=1 w
(i)
t δ

(θ
(i)
0:t,ψ

(i))
.

Algorithm 5.3: Summary of Liu and West’s algorithm

224 5 Sequential Monte Carlo methods

and solve for the pair (α(i), β(i)). The equations above can be explicitely solved
for the parameters α(i) and β(i), giving

α(i) =
(µ(i))2(1 − µ(i))

σ2(i)
− µ(i),

β(i) =
µ(i)(1 − µ(i))2

σ2(i)
− (1 − µ(i)).

It is straightforward to show that the mixture

N∑

i=1

wit−1B(ψ;α(i), β(i)), (5.7)

has the same mean and variance as (5.5), that is ψ̄ and Σ.
On the same theme, consider the case of a positive unknown parameter ψ,

such as a variance. Then we can consider a mixture of gamma distributions
instead of a mixture on Normals. We can solve, for i = 1, . . . , N the system of
equations (5.6) where α(i) and β(i) are this time the parameters of a gamma
distribution. The explicit solution is in this case

α(i) =
(µ(i))2

σ2(i)
,

β(i) =
µ(i)

σ2(i)
,

And the mixture
N∑

i=1

wit−1G(ψ;α(i), β(i))

has mean ψ̄ and variance Σ.
When the unknown parameter ψ is a vector it may not be easy to find

a parametric family of multivariate distributions f(ψ; γ) and proceed as we
did in the examples above with the beta and gamma distributions, using a
moment matching condition to come up with a continuous mixture that has
the first mean and variance as the discrete particle approximation (5.5). When
this is the case one can usually adopt the same moment matching approach
marginally and consider a mixture of product densities. More specifically,
consider a parameter ψ = (ψ1, ψ2) and let

f(ψ; γ) = f1(ψ1; γ1)f2(ψ2; γ2), γ = (γ1, γ2),

where the parameter γj can be set in such a way that fj(·|γj) has a specific
mean and variance (j = 1, 2). Let, with an obvious notation,

ψ̄ =

[
ψ̄1

ψ̄2

]
, Σ =

[
Σ1 Σ12

Σ21 Σ2

]
.

5.3 Sequential Monte Carlo with unknown parameters 225

1.1) For j = 1, 2 and i = 1, . . . , N:

• Compute ψ̄j = Eπ̂t−1(ψj) and Σj = Varπ̂t−1(ψj). Set

µ
(i)
j = aψ

(i)
j + (1 − a)ψ̄j ,

σ
(i)
j = h

2
Σj ,

µ
(i) = (µ

(i)
1 , µ

(i)
2),

θ̂
(i)
t = E(θt|θt−1 = θ

(i)
t−1, ψ = µ

(i)).

• Solve for γ
(i)
j the system of equations

E
fj(·;γ

(i)
j

)
(ψj) = µ

(i)
j ,

Var
fj(·;γ

(i)
j

)
(ψj) = σ

(i)
j .

1.2) For k = 1, . . . , N:

• Draw Ik, with P(Ik = i) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = µ(i)).

• For j = 1, 2, draw ψ
(k)
j from fj(·; γ

(Ik)
j)

• Draw θ
(k)
t from π(θt|θt−1 = θ

(Ik)
t−1 , ψ = ψ(k)) and set

θ
(k)
0:t =

`

θ
(Ik)
0:t−1, θ

(k)
t

´

.

• Set

w̃
(k)
t =

π(yt|θt = θ
(k)
t , ψ = ψ(k))

π(yt|θt = θ̂
(Ik)
t , ψ = m(Ik))

.

Algorithm 5.4: Changes to Liu and West’s algorithm when using product
kernels

Then we can set, for i = 1, . . . , N ,

µ
(i)
j =

∫
ψjfj(ψj ; γ

(i)
j) dψj = aψ

(i)
j + (1 − a)ψ̄j ,

σ2
j
(i)

=

∫
(ψj − µ

(i)
j)2fj(ψj ; γ

(i)
j) dψj = h2Σ,

(5.8)

and solve for γ
(i)
j (j = 1, 2). These are the same equations as (5.6) for the

marginal distributions of ψ1 and ψ2. Finally, we can consider the mixture

N∑

i=1

w
(i)
t−1f1(ψ1; γ

(i)
1)f2(ψ2; γ

(i)
2). (5.9)

This will have the same mean as (5.5), ψ̄, and the same marginal variances,
Σ1 and Σ2. As far as the covariance is concerned, a simple calculation shows
that under the mixture distribution (5.9) ψ1 and ψ2 have covariance a2Σ12.
Since in the practical applications of Liu and West’s method a is close to one,

226 5 Sequential Monte Carlo methods

it follows that a2Σ12 ≈ Σ12. In summary, for a bivariate parameter ψ, the
mixture (5.9) provides a countinuous approximation to (5.5) that matches first
moments, marginal second moments, and covariances up to a factor a2 ≈ 1.
Using this product kernel approximation instead of the mixture of normals
originally proposed by Liu and West, parts 1.1 and 1.2 of Algorithm 5.3 have
to be changed accordingly, as shown in Algorithm 5.4.

To conclude the discussion of mixtures of product kernels within Liu and
West’s approach, let us note that the two components ψ1 and ψ2 may also be
multivariate. Furthermore, the technique described can be generalized in an
obvious way to product kernels containing more than two factors.

5.3.1 A simple example with unknown parameters

As a simple application of particle filtering for models containing unknown
parameters, we go back to the example discussed in Section 5.1.1, this time
assuming that both the system and observation variances are unknown. Since
we have two unknown positive parameters, we are going to use at any time
t products of Gamma kernels in the mixture approximation to the posterior
distribution of the parameters. In the notation of the previous section, we
have ψ1 = V , ψ2 = W , and fj(ψj ; γj) is a gamma density for j = 1, 2, where
γj = (αj , βj) is the standard vector parameter of the gamma distribution (see
Appendix A). We use the same data that we simulated in Section 5.1.1. We
choose independent uniform priors on (0, 10) for both V and W . By looking at
a plot of the data, the upper limit 10 for the variances seems more than enough
for the interval to contain the true value of the parameter. Within these
boundaries, a uniform prior does not carry any particularly strong information
about the unknown variances. The reason for not choosing a more spread out
prior distribution is that the particle filter algorithm initially generates the
particles from the prior and, if the prior puts little probability in regions having
high likelihood, most of the particles will be discarded after just one or two
steps. Note that we are not arguing for selecting a prior based on the particular
numerical method that one uses to evaluate the posterior distribution. On
the contrary, we think that in this case a uniform prior on a finite interval
better represents our belief about the variances than, say, a prior with infinite
variance. After all, after plotting the data, who will seriously consider the
possibility of V being larger than 100? Or 1000?

R code

> ### PF with unknown parameters: Liu and West

2 > N <- 10000

> a <- 0.975

4 > set.seed(4521)

> pfOutTheta <- matrix(NA_real_, n + 1, N)

6 > pfOutV <- matrix(NA_real_, n + 1, N)

5.3 Sequential Monte Carlo with unknown parameters 227

V

0 20 40 60 80 100

1
2

3
4

5
6

7 posterior mean

50% probability interval

true
W

0 20 40 60 80 100

0
2

4
6

posterior mean

50% probability interval

true

Fig. 5.2. Sequential estimation obtained via particle filter of V (top) and W (bot-
tom)

> pfOutW <- matrix(NA_real_, n + 1, N)

8 > wt <- matrix(NA_real_, n + 1, N)

> ## Initialize sampling from the prior

10 > pfOutTheta[1,] <- rnorm(N, mean = m0(mod),

+ sd = sqrt(C0(mod)))

12 > pfOutV[1,] <- runif(N, 0, 10)

> pfOutW[1,] <- runif(N, 0, 10)

14 > wt[1,] <- rep(1/N, N)

> for (it in 2 : (n + 1))

16 + {
+ ## compute means and variances of the particle

18 + ## cloud for V and W

+ meanV <- weighted.mean(pfOutV[it - 1,], wt[it - 1,])

20 + meanW <- weighted.mean(pfOutW[it - 1,], wt[it - 1,])

+ varV <- weighted.mean((pfOutV[it - 1,] - meanV)^2,

22 + wt[it - 1,])

+ varW <- weighted.mean((pfOutW[it - 1,] - meanW)^2,

24 + wt[it - 1,])

+ ## compute the parameters of Gamma kernels

26 + muV <- a * pfOutV[it - 1,] + (1 - a) * meanV

+ sigma2V <- (1 - a^2) * varV

28 + alphaV <- muV^2 / sigma2V

+ betaV <- muV / sigma2V

30 + muW <- a * pfOutW[it - 1,] + (1 - a) * meanW

+ sigma2W <- (1 - a^2) * varW

32 + alphaW <- muW^2 / sigma2W

228 5 Sequential Monte Carlo methods

+ betaW <- muW / sigma2W

34 + ## draw the auxiliary indicator variables

+ probs <- wt[it - 1,] * dnorm(y[it - 1], sd = sqrt(muV),

36 + mean = pfOutTheta[it - 1,])

+ auxInd <- sample(N, N, replace = TRUE, prob = probs)

38 + ## draw the variances V and W

+ pfOutV[it,] <- rgamma(N, shape = alphaV[auxInd],

40 + rate = betaV[auxInd])

+ pfOutW[it,] <- rgamma(N, shape = alphaW[auxInd],

42 + rate = betaW[auxInd])

+ ## draw the state theta

44 + pfOutTheta[it,] <- rnorm(N, mean =

+ pfOutTheta[it - 1, auxInd],

46 + sd = sqrt(pfOutW[it,]))

+ ## compute the weights

48 + wt[it,] <- exp(dnorm(y[it - 1],

+ mean = pfOutTheta[it,],

50 + sd = sqrt(pfOutV[it,]),

+ log = TRUE) -

52 + dnorm(y[it - 1],

+ mean = pfOutTheta[it - 1, auxInd],

54 + sd = sqrt(muV[auxInd]),

+ log = TRUE))

56 + wt[it,] <- wt[it,] / sum(wt[it,])

+ }

5.4 Concluding remarks

We stressed in this chapter that the particle filter is very useful in online
inference, where it can be used to recursively update a posterior distribution
when the Kalman filter is not available because the model contains unknown
parameters or otherwise—for example, the model is nonlinear. While this is
certainly true, we would like to add a word of caution about the practical
usage of particle filtering techniques in genuine sequential applications.

With very few exceptions that do not cover the samplers presented above,
all the available asymptotic results hold when the time horizon T is fixed and
the number of particles N is let to go to infinity. Furthermore, in order to ob-
tain Monte Carlo approximations of similar quality for different time horizons
T1 and T2, we need to use a number of particles proportional to Ti. The impli-
cation of these results is that if we start a particle filter with N particles, and
we keep running it as new observations become available, the quality of the
approximation will eventually deteriorate, making the particle approximation
useless in the long run. The reason is that, even if we only use the particle

5.4 Concluding remarks 229

approximation of the marginal posterior at time t, π̂t(θt), we are effectively
targeting the joint posterior distribution π(θ0:t|y1:t), so we are trying to track
a distribution in an increasingly large number of dimensions. Another intuitive
way to explain the deterioration of the particle filter approximation over time
is to consider that the approximation at time t is based on the approximation
at time t− 1, so that the errors accumulate.

A possible practical solution, for applications that require a sequential
updating of a posterior destribution over an unbounded time horizon, is to
run an MCMC sampler every T sampling intervals to draw a sample from
the posterior distribution at that time—possibly based on the most recent kT
data points only, with k ≫ 1—and use this sample to start the particle filter
updating scheme for the next T sampling intervals. In this way one can run the
MCMC off-line, while at the same time keeping updating the posterior using
a particle filter. For example, in tracking the domestic stock market, one can
run an MCMC over the weekend, when the data flow stops, and use a particle
filter with hourly data, say, to update the posterior during the working week.

A similar idea can be used to initialize the particle filter when the prior
distribution is diffuse. In this case, as we previously noticed, starting the
particle filter with a sample from the prior will produce particles that are
going to be off-target after just one or two updating steps. Instead, one can
run an MCMC based on a small initial stretch of data in order to start the
particle filter from a fairly stable particle cloud.

