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OVERVIEW OF SPATIAL DATA PROBLEMS

good approximation to the intersite geodesic distances. This projection is
useful for entering coordinates in spatial statistics software packages that
require two-dimensional coordinate input and uses Buclidean metrics to
compute distances (e.g., the variogram functions in S+SpatialStats,
the spatial.exp function in WinBUGS, ete.).

(a) Compute the above projection for Chicago and Minneapolis (N = 2)
and find the Euclidean distance between the projected coordinates.
Compare with the geodesic distance. Repeat this exercise for New
York and New Orleans.

(b) When will the above projection fail to work?

CHAPTER 2

Basics of point-referenced data
models

In this chapter we present the essential elements of spatial models and
classical analysis for point-referenced data. As mentioned in Chapter 1,
the fundamental concept underlying the theory is a stochastic process
{Y(s) : s € D}, where D is a fixed subset of r-dimensional Euclidean space.
Note that such stochastic processes have a rich presence in the time series
literature, where 7 = 1. In the spatial context, usually we encounter r to be
2 (say, northings and eastings) or 3 (e.g., northings, eastings, and altitude
above sea level). For situations where r > 1, the process is often referred to
as a spatial process. For example, Y (s) may represent the level of a pollu-
tant at site s. While it is conceptually sensible to assume the existence of a
pollutant level at all possible sites in the domain, in practice the data will
be a partial realization of that spatial process. That is, it will consist of
measurements at a finite set of locations, say {si,...,sp}, where there are
monitoring stations. The problem facing the statistician is inference about
the spatial process Y (s) and prediction at new locations, based upon this
partial realization.

This chapter is organized as follows. We begin with a survey of the build-
ing blocks of point-level data modeling, including stationarity, isotropy, and
variograms (and their fitting via traditional moment-matching methods).
We then add the spatial (typically Gaussian) process modeling that en-
ables likelihood (and Bayesian) inference in these settings. We also illus-
trate helpful exploratory data analysis tools, as well as more formal classical
methods, especially kriging (point-level spatial prediction). We close with
short tutorials in S+SpatialStats and geoR, two easy to use and widely
available point-level spatial statistical analysis packages.

The material we cover in this chapter is traditionally known as geostatis-
tics, and could easily fill many more pages than we devote to it here. While
we prefer the more descriptive term “point-level spatial modeling,” we will
at times still use “geostatistics” for brevity and perhaps consistency when
referencing the literature.
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2.1 Elements of point-referenced modeling

2.1.1 Stationarity

For our discussion we assume that our spatial process has a mean, say

1 (s) = E (Y (s)), associated with it and that the variance of

for all s € D. The process Y (s) is said to be Gaussian if, for any n > 1 and

any set of sites {s1,..-,8.}, ¥ = Y (s1),..-,Y (sn))T has a

normal distribution. The process is said to be strictly stationary if, for any

given n > 1, any set of n sites {s1,...,spyand anyh € T, the
of (Y (s1),.--,Y (sa)) is the same as that of (Y (s1 +h),...,
Here D is envisioned as R as well.

A less restrictive condition is given by weak stationarity

second-order stationarity). Cressie (1993, p. 53) defines a spatial process
to be weakly stationary if p (s) = p (i-e., the process has a constant mean)

and Cov (Y (s),Y (s +h)) = C (h) for all h € R such that

both lie within D. (We note that, strictly speaking, for stationarity as.a
second-order property we will need only the second property; E(Y (s)) need
not equal E(Y (s+h)). But since we will apply the definition only to amean

0 spatial residual term, this distinction is unimportant for us

tionarity implies that the covariance relationship between the values of the
process at any two locations can be summarized by a covariance function
h. Note that

C (h), and this function depends only on the separation vector
with all variances assumed to exist, strong stationarity impli

tionarity. The converse is not true in general, but it does hold for Gaussian

processes; see Exercise 2.

2.1.2 Variograms

There is a third type of stationarity called intrinsic stationarity. Here we v

assume E[Y (s +h) — Y (s)] =0 and define

BlY(s+h) - Y(s)? =Var (Y (s+h) — Y (s)) =27(h) . 2.1) ’

Equation (2.1) makes sense only if the left-hand side depends onlyonh
(so that the right-hand side can be written at all), and not the particular
choice of s. If this is the case, we say the process is intrinsically stationary.
is called the
semivariogram. (The covariance function C (h) is sometimes referred to as.
the covariogram, especially when plotted graphically.) Note that intrinsic
stationarity defines only the first and second moments of the differences
Y (s+h) — Y (s). It says nothing about the joint distribution of a collection
of variables Y (s1), - - - ,Y (s,), and thus provides no likelihood. o
d the covari-

The function 2v (h) is then called the variogram, and « (h)

It is easy to see the relationship between the variogram an

Y (s) exists
multivariate

distribution
Y (sn+h)).

(also called

sands-+h

.) Weak sta-

es weak sta

ance function:

2y(h) =

I

Thus,
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Var (Y (s+h)—-Y (s))

Var(Y (s +h)) + Var(Y (s)) — 2Cov(Y (s + h), Y (s))
C(0) + C(0) — 2C (h)

2[C(0)-C(h)] .

7(h) =C(0)-C(h) . (2.2)

From (2.2) we see that given C, we are able to recover v easily. But what
about the converse; in general, can we recover C from «? Here it turns out
we need to assume a bit more: if the spatial process is ergodic, then C (h) —
0 as ||b|| = oo, where ||h|| denotes the length of the h vector. This is an
intuitively sensible condition, since it means that the covariance between
the values at two points vanishes as the points become further separated
in space. But taking the limit of both sides of (2.2) as ||h|| — oo, we then

have that lz’m”hH oY (B) = C(0). Thus, using the dummy variable u to
avoid confusion, we have

C (h) = C(0) — y(h) = limjujj— oy (0) — v (h) . (2.3)

Tn general, the limit on the right-hand side need not exist, but if it does
then the process is weakly (second-order) stationary with C (h) as giveri
in (2.3). We then have a way to determine the covariance function C from
the semivariogram . Thus weak stationarity implies intrinsic stationarity:
but the converse is not true; indeed, the next section offers examples o%
processes that are intrinsically stationary but not weakly stationary.

A valid variogram necessarily satisfies a negative definiteness condition.

such that ). a; = 0, if y(h) is valid, then

In fact, for any set of locations s1, ..., s, and any set of constants ay,...,an
Z Z aiaj'y(si - Sj) < 0. (2.4)
i J

To see this, note that

i

S Y wens—n) = B S aiai(Y(s) - Y (5:))

_ _Ezzaiajif(smf(sj)

2

= =K [Z aiY(si)} < 0.

| Note .that, despite the suggestion of expression (2.2), there is no re-
ationship between this result and the positive definiteness condition for
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Figure 2.1 Theoretical semivariograms for three models: (a) linear, (b) spherical,
and (c) ezponential.

covatiance functions (see Subsection 2.2.2). Cressie (1993) discusses fur-
ther necessary conditions for a valid variogram. Lastly, the condition (24)
emerges naturally in ordinary kriging (see Section 2.4).

2.1.8 Isotropy

Another important related concept is that of isotropy (as mentioned in
Subsection 1.1.1). If the semivariogram function - (h) depends upon the
separation vector only through its length [|h|, then we say that the process
is isotropic; if not, we say it is anisotropic. Thus for an isotropic process,
7 (h) is a real-valued function of a univariate argument, and can be written
as 7 (|[h]|). If the process is intrinsically stationary and isotropic, it is also
called homogeneous.

Isotropic processes are popular because of their simplicity, interpretabil-
ity, and, in particular, because a number of relatively simple parametric
forms are available as candidates for the semivariogram. Denoting ||h]| by
t for notational simplicity, we now consider a few of the more important
such forms.

1. Linear:

() = T +0% ift>0, >0, 02>0
= 0 otherwise

Note that «y (£) — oo as t — 0, and so this semivariogram does not corre-
spond to a weakly stationary process (although it is intrinsically station-
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ary). This semivariogram is plotted in Figure 2.1(a) using the parameter
values 72 = 0.2 and o = 0.5.

9. Spherical:
7% + g2 ift>1/g,
v(t) = 7-2+02{§29t-—-§-(¢t)3} f0<t<1/g,
0 otherwise

The spherical semivariogram is valid in r = .1, 2,0r3 d%mensior}s, bu‘? .for
7 > 4 it fails to correspond to a spatial variance 1'11.atr1x- th.at is positive
deEnite (as required to specify a valid joint probability distribution). The
spherical form does give rise to a stationary process and 50 the correspond-
ing covariance function is easily computed (see the exercises 1‘;hat follow).

This variogram owes its popularity largely to the fact that it oﬁ'.er‘s clear
illustrations of the nugget, sill, and range, three characteristics trad%_t}mnally
associated with variograms. Specifically, consider Figure 2.g(b), Wth}f; plots
the spherical semivariogram using the parameter vajlues 7 = 0.2, 0" = },
and ¢ = 1. While (0) = 0 by definition, 7(0':) = 2l’llmt'__)0+ v(#) = 77; this
quantity is the nugget. Next, lim;_, o, v(t) = 72 + ¢?; this asymptotic Yalu_e
of the semivariogram is called the sill. (The sill minus the nugget, which is
simply o2 in this case, is called the partial sill.) Finally, the value ¢ =1/¢
at which y(¢) first reaches its ultimate level (the sill) is called the range.
It is for this reason that many of the variogram models of this subsection
are often parametrized through R = 1/¢. Confusingly, both R and ¢ are
sometimes referred to as the range parameter, although ¢ is often more
accurately referred to as the decay parameter.

Note that for the linear semivariogram, the nugget is 72 but the sill and
range are both infinite. For other variograms (such as the next one we
consider), the sill is finite, but only reached asymptotically.

3. Ezponential:

™+ 0% (1 —exp(—¢t)) ift>0,
v(t) = 0 otherwise

The exponential has an advantage over the spherical in that it is simpler
in functional form while still being a valid variogram in all dimensions
(and without the spherical’s finite range requirement). Howezzver, note fgom
Figure 2.1(c), which plots this semivariogram assuming 7° = 0.?, o° =
1, and ¢ = 2, that the sill is only reached asymptotically, meaning that
strictly speaking, the range R = 1/¢ is infinite. In cases like this, the
notion of an effective range if often used, i.e., the distance at which thfare
is essentially no lingering spatial correlation. To make this notion precise,
we must convert from -y scale to C' scale (possible here since lim ;e ¥(£)
exists; the exponential is not only intrinsically but also weakly stationary).
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From (2.3) we have Model Covariance function, C(t)
c@) = l"znu*:O'Y(“)z— 7(? Linear C(t) does not exist
= 7°40°— ['r +o*(1 - exp(—¢t))] 0 ifi>1/¢
= o2exp(—at) . Spherical Ct)y=¢ o*[1- %gﬁt +3(9t)®] f0<t<1/¢
2+ o? otherwise
Hence o?exp(—¢t) ift>0
2 2 H — i =
Cit) = { 2 ro " ﬁi ; g . (2.5) Exponential  C(z) 724+ 0?  otherwise
g eXp(—(b ) ; POWered C(t) — 0-2 eXp(-[(tbtlp) ifi>0
If the nugget 72 = 0, then this expression reveals that the correlation be- exponential - 2 +0%2  otherwise
tween two points ¢ units apart is exp(—¢t); note that exp(—¢t) =1~ for Gaussian Ct) = o?exp(—¢*t?) ift>0
t = 0% and exp(—¢t) = 0 for ¢ = oo, both in concert with this interpreta- aus 72+ o2 otherwise
tion. Rational o2 (1~ _ ift>0
. : - . ' - +et)
A common definition of the effective range, tg, is the distance at which quadratic C(t) (12 + o ) otherwise

this correlation has dropped to only 0.05. Setting exp(—dto) equal to this

value we obtain ¢y = 3/¢, since log(0.05) ~ —3. The range will be discussed 025%%1 ift>0

Wave Ct) = g
in more detail in Subsection 2.2.2. , ® 72+ 02 otherwise
Finally, the form of (2.5) gives a clear example of why the nugget (72 in Power law C(t) does not exist

t}ﬁs case) is. often viewed as a “nonspatial effect variance,” and the partial ’ _o® 20TtV K. (2t £ 0
sill (0?) is viewed as a “spatial effect variance.” Along with ¢, a statistician Matérn Clt)y=4q ¥7T0 ( \:;_f)ag v(2vrig) otherwise
would likely view fitting this model to a spatial data set as an exercise in Matérn o7 (L+ gt) exp (—¢t) 5> 0

i i . t b iogram model - -
estimating these three parameters. We shall return to variogram mode at v = 3/2 Cc(®) RS othermise

fitting in Subsection 2.1.4.
4. Gaussian:

() = { 7 +0% (L-exp (~¢?%)) ift>0 o

Table 2.1 Summary of covariance functions (covariograms) for common paramet-

0 otherwise ric isotropic models.

The Gaussian variogram is an analytic function and yields very smooth ‘

realizations of the spatial process. We shall say much more about process

smoothness in Subsection 2.2.3.
5. Powered ezponential:

[ PP+o?(l—exp(—|gt]P)) ift>0
() = 0 otherwise

Here 0 < p < 2 yields a family of valid variograms. Note that both the
Gaussian and the exponential forms are special cases of this one.
6. Rational guadratic:

2 o2¢? :
'y(t)::{ T e HE>0

Note this is an example of a variogram that is not monotonically increas-
ing. The associated covariance function is C(t) = o?sin(¢t)/(¢t). Bessel
functions of the first kind include the wave covariance function and are
: discussed in detail in Subsections 2.2.2 and 5.1.3.
(2.7) 8. Power law
) __{ >+ 0% oft>0
7= 0 otherwise

This generalizes the linear case and produces valid intrinsic (albeit not
weakly) stationary semivariograms provided 0 < A < 2.
9. Matérn : The variogram for the Matérn class is given by

v(t) = 72 4 g2 [1 - g%\_/flts@,; Ky(Z\/;tqﬁ)] 1f t>0
s otherwise

0 otherwise

(2.8
7. Wave:

® { 2 4+ g2 (1 _ sin(i(’ft)) ift>0 This class was originally suggested by Matérn (1960, 1986). Interest in it
7(t) =

0 otherwise was revived by Handcock and Stein (1993) and Handcock and Wallis (1994),
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model Variogram, -y()
. [ +0% ift>0
Linear 7(t) = 0 otherwise
2+ 0? ift>1/¢
Spherical y@#) =< T2 +o?[3¢t—L(gt)3] HfO< t<1/¢
0 otherwise
. 72+ 0%(1 —exp(—¢t)) ift>0
Exponential  (t) = 0 otherwise
Powered ) = 72 4+ 02(1 — exp(—|gt[P)) ift> 0
exponential v 0 .othervmse
. [ PP+ o1 —exp(—¢*t?)) ift>0
Gaussian () = 0 otherwise
2.2 .
Rational ) = 72+ H%'tﬁ ift>0
quadratic v 0 otherwise
2 4+ 0%(1 — —Sin(ét)) ift>0
- ot
Wave () = 0 otherwise
2402 ft>0
Power law v(E) = 0 otherwise
) % + g2 [1 - o) K,,(2\/z7t¢)] if >0
Matérn v(t) = 2771 (v) .
0 otherwise
Matérn ) = 2+ 02 [1— (1+¢t)exp(—ot)] ift> 0
atv=23/2 v 0 otherwise

Table 2.2 Summary of variograms for common parametric isotropic models.

who demonstrated attractive interpretations for v as well as ¢. Here v > 0
is a parameter controlling the smoothness of the realized random field (se;e
Subsection 2.2.3) while ¢ is a spatial scale parameter. The function I' () is
the usual gamma function while K, is the modified Bessel function of 01..rder
v (see, e.g., Abramowitz and Stegun, 1965, Chapter 9). Implementations

of this function are available in several C/C++ libraries and also in the R

package geoR. Note that special cases of the above are the exponential
(v =1/2) and the Gaussian (v — c0). At v = 3/2 we obtain a closed fomol
as well, namely y() = 72 + o2 [L — (1 + ¢t) exp (—¢t)] for ¢t > 0, and 7°
otherwise.

The covariance functions and variograms we have described in this sub-
section are conveniently summarized in Tables 2.1 and 2.2, respectively.
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9.1.4 Variogram model fitting

Having seen a fairly large selection of models for the variogram, one might
well wonder how we choose one of them for a given data set, or whether
the data can really distinguish them (see Subsection 5.1.3 in this latter
regard). Historically, a variogram model is chosen by plotting the empir-
ical semivariogram (Matheron, 1963), a simple nonparametric estimate of
the semivariogram, and then comparing it to the various theoretical shapes
available from the choices in the previous subsection. The customary em-
pirical semivariogram is

=555 5 Fe)-vE)l, (29)

(8:,8;)eN(t)

where N (t) is the set of pairs of points such that ||s; — sj|| = ¢, and [N (2)]
is the number of pairs in this set. Notice that, unless the observations fall
on a regular grid, the distances between the pairs will all be different, so
this will not be a useful estimate as it stands. Instead we would “grid
up” the ¢-space into intervals Iy = (0,£1),1> = (t1,%2), and so forth, up
to Ix = (tx-1,tx) for some (possibly regular) grid 0 < #; < --- < ti.
Representing the ¢ values in each interval by its midpoint, we then alter
our definition of N(¢) to -

N(te) ={(sirs5) s llsi—sj]| € Lk} , k=1,... K .

Selection of an appropriate number of intervals X and location of the up-
per endpoint {x is reminiscent of similar issues in histogram construction.
Journel and Huijbregts (1979) recommend bins wide enough to capture at
least 30 pairs per bin.

Clearly (2.9) is nothing but a method of moments (MOM) estimate, the
semivariogram analogue of the usual sample variance estimate s?. While
very natural, there is reason to doubt that this is the best estimate of the
semivariogram. Certainly it will be sensitive to outliers, and the sample av-
erage of the squared differences may be rather badly behaved since under
a Gaussian distributional assumption for the Y'(s;), the squared differences
will have a distribution that is a scale multiple of the heavily skewed x?
distribution. In this regard, Cressie and Hawkins (1980) proposed a robusti-
fied estimate that uses sample averages of Y (s;) — Y(Sj)ll/ %: this estimate
is available in several software packages (see Section 2.5.1 below). Perhaps
more uncomfortable is that (2.9) uses data differences, rather than the data
itself. Also of concern is the fact that the components of the sum in (2.9)
will be dependent within and across bins, and that N (tx) will vary across
bins.

In any case, an empirical semivariogram estimate can be plotted, viewed,
and an appropriately shaped theoretical variogram model can be fit to this
“data.” Since any empirical estimate naturally carries with it a signifi-
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cant amount of noise in addition to its signal, this fitting of a theoretical
model has traditionally been as much art as science: in any given real daty,
setting, any number of different models (exponential, Gaussian, spherical,
etc.) may seem equally appropriate. Indeed, fitting has historically been
done “by eye,” or at best by using trial and error to choose values of
nugget, sill, and range parameters that provide a good match to the em:
pirical semivariogram (where the “goodness” can be judged visually or by
using some least squares or similar criterion); again see Section 2.5.1. More
formally, we could treat this as a statistical estimation problem, and tse
nonlinear maximization routines to find nugget, sill, and range parameters
that minimize some goodness-of-fit criterion. .

If we also have a distributional model for the data, we could use maxi-
mum likelihood (or restricted maximum likelihood, REML) to obtain sen-
sible parameter estimates; see, e.g., Smith (2001) for details in the case
of Gaussian data modeled with the various parametric variogram families
outlined in Subsection 2.1.3. In Chapter 4 and Chapter 5 we shall see that,
the hierarchical Bayesian approach is broadly similar to this latter method,
although it will often be easier and more intuitive to work directly with
the! covariance model C(t), rather than changing to a partial likelihood in
ordér-te introduce the semivariogram. - :

2.2 Spatial process models x
2.2.1 Formal modeling theory for spatial processes

When we write the collection of random variables {Y(s) : s € D} for some
region of interest D or more generally {Y(s) : s € "}, it is evident that
we are envisioning a stochastic process indexed by s. To capture spatial
association it is also evident that these variables will be pairwise dependent
with strength of dependence that is specified by their locations.

So, in fact, we have to determine the joint distribution for an uncount-
able number of random variables. In fact, we do this through specification
of arbitrary finite dimensional distributions, i.e., for an arbitrary number
of and choice of locations. Consistency of such specifications in terms of
ensuring a unique joint distribution will rarely hold and will be difficult to
establish. We avoid such technical concerns here by confining ourselves to
Gaussian processes or to mixtures of such processes. In this case, all that
is required is a valid correlation function, as we discuss below.

Again, to clarify the inference setting, in practice we will only observe
Y(s) at a finite set of locations, sy,ss,...,s,. Based upon {Y(s;),? =
1,...,n}, we seek to infer about the mean, variability, and association
structure of the process. We also seek to predict Y(s) at arbitrary un-
observed locations. Since our focus is on hierarchical modeling, often the
spatial process is introduced through random effects at the second stage of
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the modeling specification. In this case, we still have the same inferential
questions but now the process is never actually observed. It is latent and
the data, modeled at the first stage, helps us to learn about the process.

In this sense, we can make intuitive connections with familiar dynamic
models (e.g., West and Harrison, 1997) where there is a latent state space
model that is temporally updated. In fact, this reminds us of a critical dif-
ference between the one-dimensional time domain and the two-dimensional
spatial domain: we have full order in the former, but only partial order in
two or more dimensions. ,

The implications of this remark are substantial. Large sample analysis for
time series usually lets time go to co. Asymptotics envision an increasing
time domain. By contrast, large sample analysis for spatial process data
usually envisions a fixed region with more and more points filling in this
domain (so-called infill asymptotics). When applying increasing domain
asymptotic results, we can assume that, as we collect more and more data,
we can learn about temporal association at increasing distance in time.
When applying infill asymptotic results for a fixed domain we can learn
more and more about association as distance between points tends to 0.
However, with a maximum distance fixed by the domain we cannot learn
about association (in terms of consistent inference) at increasing distance.
The former remark indicates that we may be able to do an increasingly
better job with regard to spatial prediction at a given location. However,
we need not be doing better in terms of inferring about other features
of the process. See the work of Stein (1999a, 1999b) for a full technical
discussion regarding such asymptotic results. Here, we view such concerns
as providing encouragement for using a Bayesian framework for inference,
since then we need not rely on any asymptotic theory for inference, but
rather obtain exact inference given whatever data we have observed.

Before we turn to some technical discussion regarding covariance and cor-
relation functions, we note that the above restriction to Gaussian processes
enables several advantages. First, it allows very convenient distribution the-
ory. Joint marginal and conditional distributions are all immediately ob-
tained from standard theory once the mean and covariance structure have
been specified. In fact, this is all we need to specify in order to determine all
distributions. Also, as we shall see, in the context of hierarchical modeling,
a Gaussian process assumption for spatial random effects introduced at the
second stage of the model is very natural in the same way that independent
random effects with variance components are customarily introduced in lin-
€ar or generalized linear mixed models. From a technical point of view, as
noted in Subsection 2.1.1, if we work with Gaussian processes and station-
ary models, strong stationarity is equivalent to weak stationarity. We will
clarify these notions in the next subsection. Lastly, in most applications, it
is difficult to criticize a Gaussian assumption. To argue this as simply as
possible, in the absence of replication we have Y = (Y(s1,...,Y(sp)), a
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single realization from an n-dimensional distribution. With a sample size
of one, how can we criticize any multivariate distributional specification
(Gaussian or otherwise)?

Strictly speaking this last assertion is not quite true with a Gaussian
process model. That is, the joint distribution is a multivariate normal with
mean say 0, and a covariance matrix that is a parametric function of the
parameters in the covariance function. When n is large enough, the effective
sample size will also be large. We can obtain by linear transformation a set
of approximately uncorrelated variables through which the adequacy of the
normal assumption can be studied. We omit details.

2.2.8 Covariance functions and spectra

In order to specify a stationary process we must provide a valid covariance -

function. Here “valid” means that c(h) = cov(Y (s), Y (s + b)) is such that
for any finite set of sites si,...,s, and for any a;,...,aq,

Var I:Z aiY(si)} = ZaiajC’ov(Y(si),Y(sj)) = zaiajc(si —s;) >0,

s 1,5 .J

with strict inequality if not all the a; are 0. That is, we need c(h) to be a
positive definite function.

Verifying the positive definiteness condition is evidently not routine. For-
tunately, we have Bochner’s Theorem (see, e.g., Gikhman and Skorokhod,

1974, p. 208), which provides a necessary and sufficient condition for c(h)

to be positive definite. This theorem is applicable for h in arbitrary r-
dimensional Euclidean space, although our primary interest is in r = 2.

In general, for real-valued processes, Bochner’s Theorem states that c(h)
is positive definite if and only if

e(h) = /cos(wTh) G(dw) , (2.10)

where G is a bounded, positive, symmetric about 0 measure in R". Then
¢(0) = [ Gd(w) becomes a normalizing constant, and G(dw)/c(0) is re-
ferred to as the spectral distribution that induces c(h). If G(dw) has a
density with respect to Lebesgue measure, i.e., G(dw) = g(w)dw, then
g(w)/c(0) is referred to as the spectral density. Evidently, (2.10) can be
used to gemerate valid covariance functions; see (2.12) below. Of course,
the behavioral implications associated with c arising from a given G will
only be clear in special cases, and (2.10) will be integrable in closed form
only in cases that are even more special. . :

Since e B = cos(wTh) + isin(w”h), we have c(h) = [ eV hG(dw).
That is, the imaginary term disappears due to the symmetry of G aroun_d
0. In other words, c(h) is a valid covariance function if and only if it is
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the characteristic function of an r-dimensional symmetric random variable
(random variable with a symmetric distribution). We note that if G is not
assumed to be symmetric about 0, c(h) = [ eiWThG(dw) still provides
a valid covariance function (i.e., positive definite) but now for a complex-
valued random process on R".

The Fourier transform of c(h) is

alw) = / e R (b | 2.11)

Applying the inversion formula, c(h) = (2r)72 [ eV ho(w)dw, we see
that (2w)7"¢(w)/c(0) = g(w), the spectral density. Explicit computation
of (2.11) is usually not possible except in special cases. However, approxi-
mate calculation is available through the fast Fourier transform (FFT); see
Appendix A, Section A.4. Expression (2.11) can be used to check whether a,
given c(h) is valid: we simply compute &(w) and check whether it is positive
and integrable (so it is indeed a density up to normalization).

The one-to-one relationship between c(h) and g(w) enables examination
of spatial processes in the spectral domain rather than in the observational
domain. Computation of g(w) can often be expedited through fast Fourier
transforms; g can be estimated using the so-called periodogram.-Likelihoods
can be obtained approximately in the spectral domain enabling inference
to be carried out in this domain. See, e.g., Guyon (1995) or Stein (1999a)
for a full development. Likelihood evaluation is much faster in the spectral
domain. However, in this book we confine ourselves to the observational
domain because of concerns regarding the accuracy associated with ap-
proximation in the spectral domain (e.g., the likelihood of Whittle, 1954),
and with the ad hoc creation of the periodogram (e.g., how many low fre-
quencies are ignored). We do however note that the spectral domain may
afford the best potential for handling computation associated with large
data sets.

Isotropic covariance functions, i.e., ¢(||h||), where ||h|| denotes the length
of h, are the most frequently adopted choice within the stationary class.
There are various direct methods for checking the permissibility of isotropic
covariance and variogram specifications. See, e.g., Armstrong and Diamond
(1984), Christakos (1984), and McBratney and Webster (1986). Again de-
noting ||h|| by ¢ for notational simplicity, recall that Tables 2.1 and 2.2
provide the covariance function C(t) and variogram -y(t), respectively, for
the widely encountered parametric istropic choices that were initially pre-
sented in Subsection 2.1.3.

It is noteworthy that an isotropic covariance function that is valid in
dimension r need not be valid in dimension r + 1. The intuition may
be gleaned by considering 7 = 1 versus r = 2. For three points, in one-
dimensional space, given the distances separating points 1 and 2 (d12) and
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points 2 and 3 (da3), then the distance separating points 1 and 3 dy3 is
either dis +das or |di2 — das|. But in two-dimensional space, given d;5 and
do3, di3 can take any value in R% (subject to triangle inequality). With

increasing dimension more sets of interlocation distances are possible for g

given number of locations; it will be more difficult for a function to satisfy
the positive definiteness condition. Armstrong and Jabin (1981) provide an
explicit example that we defer to Exercise 3.

There are isotropic correlation functions that are valid in all dimensions,
The Gaussian correlation function, k(||h]]) = exp(—¢ ||k|]®) is an exam-
ple. It is the characteristic function associated with r i.i.d. normal random
variables, each with variance 1/(2¢) for any r. More generally, the powered
exponential, exp(—¢ ||A]|*), 0 < @ < 2 (and hence the exponential corre-
lation function) is valid for any r. The Cauchy correlation function is also
valid in any dimension.

Rather than seeking isotropic correlation functions that are valid in all
dimensions, we might seek all valid isotropic correlation function in a par-
ticular dimension r. Matérn (1960, 1986) provides the general result. The
set of ¢(J|A||) of the form

" ae(|b]) = /0 ” (ﬂ?"ﬁﬂ) (v +1)J, (w [|h])G(dw) , (2.12)

where G is nondecreasing and integrable on %%, J, is the Bessel function
of the first kind of order v, and v = (r — 2)/2 provides all valid isotropic
correlation functions on R7.

When 7 = 2, v = 0 so that arbitrary correlation functions in two-
dimensional space arise as scale mixtures of Bessel functions of order 0.
In particular, Jo(d) = Y pey L(‘k'—f))—;— (g—)k/z. Jo decreases from 1 at d = 0
and will oscillate above and below 0 with amplitudes and frequencies that
are diminishing as d increases (see Figure 5.1 in Section 5.1). Typically,
correlation functions that are monotonic and decreasing to 0 are chosen
but, apparently, valid correlation functions can permit negative associa-
tions with w determining the scale in distance space. Such behavior might
be appropriate in certain applications.

The form in (2.12) at v = 0 was exploited in Shapiro and Botha (1981)
and Ver Hoef and Barry (1998) to develop “nonparametric” variogram
models and “black box” kriging. It was employed in Ecker and Gelfand
(1997) to obtain flexible spatial process models within which to do inference
from a Bayesian perspective (see Subsection 5.1.3).

If we confine ourselves to strictly monotonic isotropic covariance func-
tions then we can introduce the notion of a range. As described above, the
range is conceptualized as the distance beyond which association becomes
negligible. If the covariance function reaches 0 in a finite distance, then
we refer to this distance as the range. However, as Table 2.1 reveals, we
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customarily work with covariance functions that attain 0 asymptotically as
|[a]| = oo- In this case, it is common to define the range as the distance be-
yond which correlation is less than .05, and this is the definition we employ
in the sequel. So if p is the correlation function, then writing the range as R
we solve p(R; 8) = .05, where 6 denotes the parameters in the correlation
function. Therefore, R is an implicit function of the parameter 6.

We do note that some authors define the range through the variogram,
i.e., the distance at which the variogram reaches .95 of its sill. That is,
we would solve y(R) = .95(c? + 72). Note, however, that if we rewrite
this equation in terms of the correlation function we obtain 72 4+ o2(1 —
p(R;8)) = .95(7* + 0%), so that p(R;0) = .05 (ﬁggi) Evidently, the
solution to this equation is quite different from the solution to the above
equation. In fact, this latter equation may not be solvable, e.g., if 02/(0% +
72) < .05, the case of very weak “spatial story” in the model. As such, one
might argue that a spatial model is inappropriate in this case. However,
with o2 and 72 unknown, it seems safer to work with the former definition.

We note that one can offer constructive strategies to build larger classes
of correlation functions. Three approaches are mixing, products, and con-
volution. Mixing notes simply that if C1, ..., Cy, are valid correlation func-
tions in " and if 377, p; =1, p; > 0, then C(h) = 31~ p;C;(h) is also a
valid correlation function in 7. This follows since C'(h) is the characteris-
tic function associated with ) p; f;(x), where f;(x) is the symmetric about
0 density in r-dimensional space associated with C;(h).

Using products simply notes that again if ¢y, ..., ¢, are valid in R, then
[TiZ; ¢ is a valid correlation function in ®". This follows since []ir; c;(n)
is the characteristic function associated with V' = 37", V; where the V;
are independent with V; having characteristic function ¢;(h).

Convolution simply recognizes that if ¢; and ¢y are valid correlation
functions in R, then cio(h) = [ei(h — t)ea(t)dt is a valid correlation
function in ®". The argument here is to look at the Laplace transform of
c12(h). That is,

Elg(W) = fe“inhclg(h)dh
= [e=W"h [ () (h - t)cy(t)dtdh
= El (W) . E2(W) s

where C;(w) is the Laplace transform of ¢;(h) fori = 1, 2. But then c12(h) =
@m)~2 [ V"l (w)ey (w)dw. Now & (w) and é(w) are both symmetric
about 0 since, up to a constant, they are the spectral densities associated
with ¢; (h) and ¢z (h), respectively. Hence, ¢c12(h) = [ coswThG(dw) where
G(dw) = (27)~%¢; (w)2Ca(w)dw.

Thus, from (2.10), ¢i2(h) is a valid correlation function, ie., G is a
bounded, positive, symmetric about 0 measure on 2. In fact, if ¢; and
¢y are isotropic then ;s is as well; we leave this verification as Exercise 5.



36 BASICS OF POINT-REFERENCED DATA MODELS

2.2.3 Smoothness of process realizations

How does one select among the various choices of correlation functiong?
Usual model selection criteria will typically find it difficult to distinguish,
say, among one-parameter isotropic scale choices such as the exponential,
Gaussian, or Cauchy. Ecker and Gelfand (1997) provide some graphical

illustration showing that, through suitable alignment of parameters, the

correlation curves will be very close to each other. Of course, in compar-
ing choices with parametrizations of differing dimensions (e.g., correlation
functions developed using results from the previous section), we will need
to employ a selection criterion that penalizes complexity and rewards par-
simony (see Section 4.2.3).

An alternative perspective is to make the selection based upon theoret-
ical considerations. This possibility arises from the powerful fact that the
choice of correlation function determines the smoothness of realizations
from the spatial process. More precisely, a process realization is viewed as
a random surface over the region. By choice of ¢ we can ensure that these
realizations will be almost surely continuous, or mean square continuous, or
meéan square differentiable, and so on. Of course, at best the process is only
observed at finitely many locations. (At worst, it is never observed, e.g.,
when the spatial process is used to model random spatial effects.) So, it is
not possible to “see” the smoothness of the process realization. Elegant the-
ory, developed in Kent (1989), Stein (1999a) and extended in Banerjee and

Gelfand (2003), clarifies the relationship between the choice of correlation-

function and such smoothness. We provide a bit of this theory below, with
further discussion in Section 10.1. For now, the key point is that, according
to the process being modeled, we may, for instance, anticipate surfaces not
be continuous (as with digital elevation models in the presence of gorges,
escarpments, or other topographic features), or to be differentiable (as in
studying land value gradients or temperature gradients). We can choose a
correlation function to essentially ensure such behavior.

Of particular interest in this regard is the Matérn class of covariance
functions. The parameter v (see Table 2.1) is, in fact, a smoothness pa-
rameter. In two-dimensional space, the greatest integer in v indicates the
number of times process realizations will be mean square differentiable. In
particular, since v = oo corresponds to the Gaussian correlation function,
the implication is that use of the Gaussian correlation function results
in process realizations that are mean square analytic, which may be too
smooth to be appropriate in practice. That is, it is possible to predict Y (s)
perfectly for all s € %2 based upon observing Y (s) in an arbitrarily small
neighborhood. Expressed in a different way, use of the Matérn covariance
function as a model enables the data to inform about v; we can learn about
process smoothness despite observing the process at only a finite number
of locations.
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- Hence, we follow Stein (1999a) in recommending the Matérn class as a
general tool for building spatial models. The computation of this function
requires evaluation of a modified Bessel function. In fact, evaluation will be
done repeatedly to obtain a covariance matrix associated with n locations,
and then iteratively if a model is fit via MCMC methods. This may appear
off-putting but, in fact, such computation can be done efficiently using
expansions to approximate K,(-) (Abramowitz and Stegun, p. 435), or
working through the inversion formula below (2.11), which in this case
becomes

K, h iwT 2 2
9 (¢|[2h”) q‘[fg-,,g:ib(gl_{_lg_)) — [r ezW h(¢.. + ”W”-')"'(v+1‘/2)dw, (213)

where K, is the modified Bessel function of order v.
~ Computation of (2.13) is discussed further in Appendix Section A.4. In

particular, the right side of (2.13) is readily approximated using fast Fourier
transforms. Again, we revisit process smoothness in Section 10.1. .

2.2.4 Directional derivative processes

The previous section offered discussion intended to clarify, for a spatial pro-
cess, the connection between correlation function and smoothness of process
realizations. When realizations are mean square differentiable, we can think
about a directional derivative process. That is, for a given direction, at each
location we can define a random variable that is the directional derivative
of the original process at that location in the given direction. The entire
collection of random variables can again be shown to be a spatial process.
We offer brief development below but note that, intuitively, such variables
would be created through limits of finite differences. In other words, we
can also formalize a finite difference process in a given direction. The value
of formalizing such processes lies in the possibility of assessing where, in a

region of interest, there are sharp gradients and in which directions. They

also enable us to work at different scales of resolution. Application could

involve land-value gradients away from a central business district, temper-
ature gradients in a north-south direction as mentioned above, or perhaps
the maximum gradient at a location and the direction of that gradient, in
order to identify zones of rapid change (boundary analysis). Some detail

in the development of directional derivative processes appears in Subsec-
tion 10.1.2. ’

2.2.5 Anisotropy

Geometric anisotropy

Stationary correlation functions extend the class of correlation functions
from isotropy where association only depends upon distance to association
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that depends upon the separation vector between locations. As a result,
association depends upon direction. An illustrative example is the class of
geometric anisotropic correlation functions where we set V

c(s —s') = o?p((s —s')TB(s — &")) . (2.14)

In (2.14), B is positive definite with p a valid correlation function in §r
(say, from Table 2.1). We would omit the range/decay parameter since it
can be incorporated into B. When r = 2 we obtain a specification with
three parameters rather than one. Contours of constant association arising
from ¢ in (2.14) are elliptical. In particular, the contour corresponding to -
p = .05 provides the range in each spatial direction. Ecker and Gelfand -
(1997) provide the details for Bayesian modeling and inference incorporat-
ing (2.14); see also Subsection 5.1.4.

Following the discussion in Subsection 2.2.2, we can extend geometric
anisotropy to product geometric anisotropy. In the simplest case, we would -
set

c(s =) = 0? p1((s =) T Bi(s — 8")) p2((s — 5') " Bo(s — ")) ,

nc;pipg that c is valid since it arises as a product of valid covariance func-
tionsSee Ecker and Gelfand (2003) for further details and examples.

Other notions of anisotropy

In a more general discussion, Zimmerman (1993) suggests three differ-
ent notions of anisotropy: sill anisotropy, nugget anisotropy, and range
anisotropy. More precisely, working with a variogram ~(h), let h be an
arbitrary separation vector so that h/ ||h|| is a unit vector in h’s direction.
Consider y(ch/ [|h||). Let ¢ — co and suppose lim._,o (ch/ ||h]|) depends
upon h. This situation is naturally referred to a sill anisotropy. If we work

with the usual relationship v(ch/ [|h]|) = 72 +02 <1 -p (cﬁ)) ,then,in

some directions, p must not go to 0 as ¢ — co. If this can be the case, then
ergodicity assumptions (i.e., convergence assumptions associated with av-
eraging) will be violated. If this can be the case, then perhaps the constant
mean assumption, implicit for the variogram, does not hold. Alternatively,
it is also possible that the constant nugget assumption fails. e

Instead, let ¢ — 0 and suppose lim,—,o y(ch/ ||h|]) depends upon h. This
situation is referred to as nugget anisotropy. Since, by definition, p must
go to 1 as ¢ -+ 0. This says that the measurement errors that are assumed -
uncorrelated with common variance may be correlated. More generally, a
simple white noise process model for the nonspatial errors is not appropri-
ate.

A third type of anisotropy is range anisotropy where the range depends
upon direction. Zimmerman (1993) asserts that “this is the form most often
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seen in practice.” Geometric anisotropy and the more general product geo-
metric anisotropy from the previous subsections are illustrative cases. How-
ever, given the various constructive strategies offered in Subsection 2.2.2
to create more general stationary covariance functions, we can envision
nongeometric range anisotropy, implying general correlation function or
vyariogram contours in R2. However, due to the positive definiteness restric-
tion on the correlation function, the extent of possible contour shapes is
otill rather limited.

Lastly, motivated by directional variograms (see Subsection 2.3.2), some
authors propose the idea of nested models (see Zimmerman, 1993, and the
references therein). That is, for each separation vector there is an associ-
ated angle with, say, the z-axis, which by symmetry considerations can be
restricted to [0, 7). Partitioning this interval into a set of angle classes, a
different variogram model is assumed to operate for each class. In terms
of correlations, this would imply a different covariance function is operat-
ing for each angle class. But evidently this does not define a valid: process
model: the resulting covariance matrix for an arbitrary set of locations need
not be positive definite.

This can be seen with as few as three points and two angle classes. Let
(s1,s2) belong to one angle class with (s1,s3) and (s3,s3) in the other.
With exponential isotropic correlation functions in each class by choosing
¢1 and ¢ appropriately we can make p(s; — s2) = 0 while p(s; —s3) =
p(s2—s3) =~ 0.8. A quick calculation shows that the resulting 3x 3 covariance
(correlation) matrix is not positive definite. So, in terms of being able to
write proper joint distributions for the resulting data, nested models are
inappropriate; they do not provide an extension of isotropy that allows for
likelihood based inference.

2.3 Exploratory approaches for point-referenced data
2.3.1 Basic techniques

Exploratory data analysis (EDA) tools are routinely implemented in the
process of analyzing one- and two-sample data sets, regression studies,
generalized linear models, etc. (see, e.g., Chambers et al., 1983; Hoaglin,
Mosteller, and Tukey, 1983, 1985; Aiktin et al., 1989). Similarly, such tools
are appropriate for analyzing point-referenced spatial data.

For continuous data, the starting point is the so-called “first law of geo-
statistics.” Figure 2.2 illustrates this “law” in a one-dimensional setting.
The data is partitioned into a mean term and an error term. The mean
corresponds to global (or first-order) behavior, while the error captures lo-
cal (or second-order) behavior through a covariance function. EDA tools
examine both first- and second-order behavior.

The law also clarifies that spatial association in the data, Y'(s), need
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Figure 2.2 Illustration of the first law of geostatistics.
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Figure 2.3 Illustrative three-dimensional “drop line” scatterplot, scallop data.

not resemble spatial association in the residuals, e(s). That is, spatial as-
sociation in the Y'(s) corresponds to looking at E(Y(s) — u)(Y(s') — p),
while spatial structure in the €(s) corresponds to looking at E(Y(s) —
u(s))(Y (s') — pu(s')). The difference between the former and the latter is
(1~ p(s)) (1 — p(s")), which need not be negligible.

Certainly an initial exploratory display should be a simple map of the
locations themselves. We need to assess how regular the arrangement of
the points is. Next, some authors would recommend a stem-and-leaf dis-
play of the Y'(s). This plot is evidently nonspatial and is customarily for
observations which are i.i.d. We expect both nonconstant mean and spatial
dependence, but such a plot may at least suggest potential outliers. Next we
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Figure 2.4 Illusirative three-dimensional surface ( “perspective”) plot, Stockton
real estate data.

might develop a three-dimensional “drop line” scatterplot of Y'(s;) versus
s;, which we could convert to a three-dimensional surface plot or perhaps
a contour plot as a smoothed summary. Examples of these three plots are
shown for a sample of 120 log-transformed home selling prices in Stockton,
CA, in Figures 2.3, 2.4, and 2.5, respectively. However, as the preceding
paragraph clarifies, such displays may be deceiving. They may show spa-
tial pattern that will disappear after u(s) is fitted, or perhaps vice versa.
It seems more sensible to study spatial pattern in the residuals.

In exploring p(s) we may have two types of information at location s. One
is the purely geographic information, i.e., the geocoded location expressed
in latitude and longitude or as projected coordinates such as eastings and
northings (Subsection 1.2.1 above). The other will be features relevant for
explaining the Y'(s) at s. For instance, if Y(s) is a pollution concentration,
then elevation, temperature, and wind information at s could well be useful
and important. If instead Y (s) is the selling price of a single-family home at
s, then characteristics of the home (square feet, age, number of bathrooms,
etc.) would be useful.
When the mean is described purely through geographic information, y(s)
is referred to as a trend surface. When s € R2, the surface is usually devel-
oped as a bivariate polynomial. For data that is roughly gridded (or can
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Figure 2.6 Illustrative row boz plots, Diggle and Ribeiro (2002) surface elevation
data.

Figure 2.5 Illustrative contour plot, Stockton real estate data.

be assigned to row and column bins by overlaying a regular lattice on the
points), we can make row and column boxplots looking for trend. Plotting
these boxplots versus their center could clarify the existence and nature
of such trend. In fact, median polishing (see, e.g., Hoaglin, Mosteller, and
Tukey, 1985) could be used to extract row and column effects, and also'to
see if a multiplicative trend surface term is useful; see Cressie (1983, pp.
46-48) in this regard. ;

Figures 2.6 and 2.7 illustrate the row and column boxplot approach fora
data set previously considered by Diggle and Ribeiro (2002). The response
variable is the surface elevation (“height”) at 52 locations on a regular grid
within a 310-foot square (and where the mesh of the grid is 50 feet). The
plots reveals some evidence of spatial pattern as we move along the row
but not along the columns of the regular grid.

To assess small-scale behavior, some authors recommend creating th
semivariogram cloud, i.e., a plot of (¥ (s;)—Y (s;))? versus [|s; ~s;||. Usuall
this cloud is too “noisy” to reveal very much; see, e.g., Figure 5.2. The
empirical semivariogram (2.9) is preferable in terms of reducing some of the
noise, and can be a helpful tool in seeing the presence of spatial structure.
Again, the caveat above suggests employing it for residuals (not the data
itself) unless a constant mean is appropriate.

An empirical (nonparametric) covariance estimate, analogous to (2.9),,'

also available. Creating bins as in this earlier approach, define

W= Y FE)-DE)-F), (@)

* (81,85)EN(tx)

where again N (t) = {(si,s;) : ||si —sj|| € Iy} for k= 1,..., K, I} indexes
the kth bin, and there are N}, pairs of points falling in this bin. Equation
(2.15) is a spatial generalization of a lagged autocorrelation in time series
analysis. Since € uses a common Y for all Y (s;), it may be safer to employ
(2.15) on the residuals. Two further issues arise: first, what should we define
¢(0) to be, and second, regardless of this choice, the fact that ¥(t;) does
not equal 2(0) — (), k = 1,..., K. Details for both of these issues are left
o0 Exercise 6.

_ Again, with a regular grid or binning we can create “same-lag” scatter-
plots. These are plots of Y'(s; + he) versus Y (s;) for a fixed 7 and a fixed
unit vector e. Comparisons among such plots may reveal the presence of
anisotropy and perhaps nonstationarity.

Lastly, suppose we attach a neighborhood to each point. We can then
compute the sample mean and variance for the points in the neighborhood,
and even a sample correlation coefficient using all pairs of data in the
neighborhood. Plots of each of them versus location can be informative.
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Flgure 2 7 Illustrative column bog plots, Diggle and Ribeiro (2008) surface eleva:
tion data.
The first may give some idea regarding how the mean structure changes LN

across the study region. Plots of the second and third may provide evidence
of nonstationarity. Implicit in extracting useful information from these plots
is a roughly constant local mean. If u(s) is to be a trend surface, this is
plausible. But if u(s) is a function of some geographic variables at s (sa
home characteristics), then use of residuals would be preferable.

Figure 2.8 Sites sampled in the Atlantic Ocean for 1990 and 1993 scallop catch
data.

number of angle classes. For example, a common choice of angle classes
involves the four cardinal directions measured counterclockwise from the
z-axis (0°, 45°, 90°, and 135°) where € is 22.5°. Journel and Froidevaux
(1982) display directional semivariograms at angles 35°, 60°, 125°, and
150° in deducing anistropy for a tungsten deposit. While knowledge of
the underlying spatial characteristics of region D is invaluable in choosing
directions, often the choice of the number of angle classes and the directions
seems to be arbitrary.

For a given angle class, the Matheron empirical semivariogram (2.9) can
be used to provide a directional semivariogram for angle ;. Theoretically,
all types of anisotropy can be assessed from these directional semivari-
ograms; however, in practice determining whether the sill, nugget, and/or
range varies with direction can be difficult. Figure 2.9(a) illustrates di-
rectional semivariograms for the 1990 scallop data in the four cardinal
directions. Note that the semivariogram points are connected only to aid

2.8.2 Assessing amisotropy

We illustrate various EDA techniques to assess anisotropy using samphng of
scallop abundance on the continental shelf off the coastline of the northeast-
ern U.S. The data from this survey, conducted by the Northeast Fisheries
Science Center of the National Marine Fisheries Service, is available within:
the S+SpatialStats package; see Subsection 2.5.1. Figure 2.8 shows the
sampling sites for 1990 and 1993.

Directional semivariograms and rose diagrams

The most common EDA technique for assessing anisotropy involves use
of directional semivariograms. Typically, one chooses angle classes 7; +
€ 1 = 1,...,L where ¢ is the halfwidth of the angle class and L is the
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Empirical semivariogram contour (ESC) plots

s A more informative method for assessing anisotropy is a contour plot of the
empirical semivariogram surface in 2. Such plots are mentioned informally
= in Isaaks and Srivastava (1989, pp. 149-151) and in Haining (1990, pp.
984-286); the former call them contour maps of the grouped variogram
= values, the latter an isarithmic plot of the semivariogram. Following Ecker
g and Gelfand (1999), we formalize such a plot here calling it an empirical
é ) 2 semivariogram contour (ESC) plot. For each of the W pairs of sites
(‘5% © < in %2, calculate h; and hy, the separation distances along each axis. Since
the sign of hy, depends upon the arbitrary order in which the two sites
= are compared, we demand that hy > 0. (We could alternatively demand
that hg > 0.) That is, we take (~hg, —hy) when hy < 0. These separation
h distances are then aggregated into rectangular bins B;; where the empirical

- semivariogram values for the (4, j)th bin are calculated by

. 1 9 ,.

0 50 ;ic:anlzo(k nr:'_)oo 250 N ew % = o Z Y (sk) = Y(s1))*, (2.16)

U {(k0):(Sk~S1)€B:;}

where Np;; equals the number of sites in bin B;;. Because we force hy > 0
with h, unrestricted, we make the bin width on the y-axis half of that
for the z-axis. We also force the middle class on the z-axis to be centered
around zero. Upon labeling the center of the (4, )th bin by (z;,y;), a three
dimensional plot of «j; versus (z;,;) yields an empirical semivariogram
surface. Smoothing this surface using, for example, the algorithm of Akima
(1978) available in the S-plus software package (see Subsection 2.5.1) pro-
duces a contour plot that we call the ESC plot. A symmetrized version of
the ESC plot can be created by reflecting the upper left quadrant to the
lower right and the upper right quadrant to the lower left.

The ESC plot can be used to assess departures from isotropy; isotropy
is depicted by circular contours while elliptical contours capture geomet-
ric anisotropy. A rose diagram traces only one arbitrarily selected contour
of this plot. A possible drawback to the ESC plot is the occurrence of
sparse counts in extreme bins. However, these bins may be trimmed be-
fore smoothing if desired. Concerned that use of geographic coordinates
could introduce artificial anisotropy (since 1° latitude # 1° longitude in
the northeastern United States), we have employed a Universal Transverse
Mercator (UTM) projection to kilometers in the E-W and N-S axes (see
Subsection 1.2.1). )

Figure 2.10 is the empirical semivariogram contour plot constructed us-
ing z-axis width of 30 kilometers for the 1993 scallop data. We have overlaid
this contour plot on the bin centers with their respective counts. Note that
using empirical semivariogram values in the row of the ESC plot, where
hy = 0 provides an alternative to the usual 0° directional semivariogram.
The latter directional semivariograms are based on a polar representation

Figure 2.9 Directional semivariograms (a) and a rose diagram (b) for the 1990
scallop data.

comparison. Possible conclusions are: the variability in the 45° direction
(parallel to the coastline) is significantly less than in the other three di-
rections and the variability perpendicular to the coastline (135°) is very.
erratic, possibly exhibiting sill anisotropy. We caution however that it is
dangerous to read too much significance and interpretation into directional
variograms. No sample sizes (and thus no assessments of variability) are at
tached to these pictures. Directional variograms from data generated under
a simple isotropic model will routinely exhibit differences of the magnitudes
seen in Figure 2.9(a). Furthermore, it seems difficult to draw any conclu-
sions regarding the presence of geometric anisotropy from this figure.
A rose diagram (Isaaks and Srivastava, 1989, pp. 151-154) can be cre-
ated from the directional semivariograms to evaluate geometric anisotropy.
At an arbitrarily selected v*, for a directional semivariogram at angle 7,
the distance d* at which the directional semivariogram attains v* can be
interpolated. Then, the rose diagram is a plot of angle n and correspond-
ing distance d* in polar cordinates. If an elliptical contour describes the
extremities of the rose diagram reasonably well, then the process exhibits
geometric anisotropy. For instance, the rose diagram for the 1990 scallop
data is presented in Figure 2.9(b) using the v* contour of 4.5. It is approx-
imately elliptical, oriented parallel to the coastline (= 45°) with a ratio of
major to minor ellipse axes of about 4.
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of the angle and distance. For a chosen direction n and tolerance e, the
area for a class fans out as distance increases (see Figure 7.1 of Isaaks and
Srivastava, 1989, p. 142). Attractively, a directional semivariogram based
on the rectangular bins associated with the empirical semivariogram in
$2 has bin area remaining constant as distance increases. In Figure 2.11,
we present the four customary directional (polar representation) semivari-
ograms for the 1993 scallop data. Clearly, the ESC plot is more informative,
particularly in suggesting evidence of geometric anisotropy.

A linear predictor for Y (sg) based on y would take the form 3 ZzY(sz) +
dg. Using squared error loss, the best linear prediction would minimize
E[Y (s0)— (3 Y (si)+00)]? over & and the ¢;. For a constﬁan? mean process
we would take > f; = 1, in which case we would mimmlze.E[Y(so) -
S 6:Y (si)]2 + 62, and clearly o would be set to 0. Now letting a9 = 1
and a; = —{; we see that the criterion becomes E[> 7 a;Y (s;)]* with
> a; = 0. But from (2.4) this expectation becomes —Zi .Ej aifzjf?'(si -
s;), revealing how, historically, the variogram arose in kng}ng within t:,he
geostatistical framework. Indeed, the optimal £’s can be obtained by so%vmg
this constrained optimization (e.g., using Lagrange multipliers), and will be
functions of y(h) (see, e.g., Cressie, 1983, Sec. 3.2). With an estimate of v,
one immediately obtains the so-called ordinary kriging estimate. Other than
the intrinsic stationarity model (Subsection 2.1.2), no further distributional
assumptions are required for the Y'(s)’s.

Let us take a more formal look at kriging in the context of Gaussian
processes. Consider first the case where we have no covariates, but only the
responses Y (s;). This is developed by means of the following model for the
observed data:

2.4 Classical spatial prediction

In this section we describe the classical (i-e., minimum mean-squared €rror)
approach to spatial prediction in the point-referenced data setting. The
approach is commonly referred to as kriging, so named by Matheron (1963)
in honor of D.G. Krige, a South African mining engineer whose seminal
work on empirical methods for geostatistical data (Krige, 1951) inspired the
general approach (and indeed, inspired the convention of using the terms
“point-level spatial” and “geostatistical” interchangeably!). The problem
is one of optimal spatial prediction: given observations of a random field
Y = (Y (s1),...,Y (sn))', how do we predict the variable ¥ at a site sg
where it has not been observed? In other words, what is the best predictor
of the value of Y (sq) based upon the data y?

Y =pl+¢€, where e ~ N (0,Y) .

For a spatial covariance structure having no nugget effect, we specify ¥ as

S = o”H (¢) where (H (¢)),;; = p(#;ds) ,
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where di; = ||s; — s;||, the distance between s; and s; and p is a valiq
correlation function on R" such as those in Table 2.1. For a model having
a nugget effect, we instead set

T=0’H(¢)+7°1,

where 72 is the nugget effect variance.

When covariate values x = (z(s1),...,z(s,)) and z(so) are available
for incorporation into the analysis, the procedure is often referred to ag
universal kriging, though we caution that some authors (e.g., Kaluzny et
al., 1998) use the term “universal” in reference to the case where only
latitude and longitude are available as covariates. The model now takes
the more general form

Y = XB+¢€, wheree ~ N(0,%),

with ¥ being specified as above, either with or without the nugget effect.
Note that ordinary kriging may be looked upon as a particular case of
universal kriging with X being the n x 1 matrix (i.e., column vector) 1,
and B the scalar p.

. We now pose our prediction problem as follows: we seek the function
f (¥} that minimizes the mean-squared prediction error,

B (so) - £ ) |v] - (2.17)

By adding and subtracting the conditional mean E[Y (so)|y] inside the
square, grouping terms, and squaring we obtain

E[(v(so) - £ 3))* |¥]
= B{(Y(s0) - BIY (s0)l¥])* | ¥ } + {EI¥ (so)ly] - F 0)}* ,

since (as often happens in statistical derivations like this) the expectation
of the cross-product term equals zero. But since the second term on the
right-hand side is nonnegative, we have

B[00~ £ ) 3] 2 B{(Y(s0) - BV (s0)3))* |}

for any function f (y). Equality holds if and only if f (y) = E[Y (so)|y], so it

must be that the predictor f(y) that minimizes the error is the conditional -

expectation of Y'(sg) given the data. This. result is quite intuitive from a
Bayesian point of view, since this f(y) is just the posterior mean of Y (sq),
and it is well known that the posterior mean is the Bayes rule (i.e., the
minimizer of posterior risk) under squared error loss functions of the sort
adopted in (2.17) above as our scoring rule.

Having identified the form of the best predictor we now turn to its es-
timation. Consider first the wildly unrealistic situation in which all the
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populamon parameters (8,02, ¢, and 72) are known. From standard multi-
variate normal theory we have the following general result: If

Y ~N Hy Q11 Qe
Y> Ho J '\ Qo oo ’

where a1 = 05, then the conditional distribution p (Y1lY?2) is normal
with mean and variance:

ElY1|Ys] = g+ Q05 (Yo = pa);
‘/(LT‘{Ylin] == Qll - 0129;21021 .

Tn our framework, we have Y; =Y (sg) and Yy = y. It then follows that
Q1120'2"‘7-2: Q12:")’T, and Q222220‘2H(¢)+7‘2],

where v¥ = (6®p (¢;do1) , - - ., 02p (§; don)). Substituting these values into
the mean and variance formulae above, we obtain .

E[Y (s0)ly] xg B+ (y - XB) , (2.18)

and Var[Y(so)ly] = o®>+712—~4T8 1y, (2.19)

We remark that this solution assumes we have actually observed the co-
variate value xg = x (so) at the “new” site sqo; we defer the issue of missing
xo for the time being. ‘

Note that one could consider prediction not at a new location, but at one
of the already observed locations. In this case one can ask whether or not
the predictor in (2.18) will equal the observed value at that location. We
leave it as an exercise to verify that if 72 = 0 (i.e., the no-nugget case, or
so-called noiseless prediction) then the answer is yes, while if 72 > 0 then
the answer is no.

Next, consider how these answers are modified in the more realistic sce-
nario where the model parameters are unknown and so must be estimated
from the data. Here we would modify f(y) to

f® =xFB+378 (y Xﬁ)

N ~ T ,\ — —1 —~
where 3 = (62p(d;dor), -, 5%p(J;don) ) —(XTE—IX XTS-1y,

the he usual weighted least squares estimator of 8, and 2 62 H(¢). Thus
f (¥) can be written as ATy, where
~ ~ ~ ~1 ~
A=515451x (XTE‘lX) (xo - XTE-W) . (2.20)
If x¢ is unobserved, we can estimate it and Y (so) jointly by iterating be-
tween this formula and a corresponding one for %g, namely

=XTx,
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which arises simply by multiplying both sides of (2.20) by X7 and sim.
plifying. This is essentially an EM (expectation-maximization) algorithm
(Dempster, Laird, and Rubin, 1977), with the calculation of %o being the
E step and (2.20) being the M step.

In the classical framework a lot of energy is devoted to the determination
of the optimal estimates to plug into the above equations. Typically, re-
stricted maximum likelihood (REML) estimates are selected and shown tq
have certain optimal properties. However, as we shall see in Chapter 5, how
to perform the estimation is not an issue in the Bayesian setting. There, we
instead impose prior distributions on the parameters and produce the ful]
posterior predictive distribution p (Y (sp)ly). Any desired point or interval
estimate (the latter to express our uncertainty in such prediction) may then
be computed with respect to this distribution.

(which is actually log(tcatch + 1)) to myscallops. We then draw the his-
togram of the variable 1gcatch:

>myscallops <- scallops

>myscallops[, ‘ ‘lgcatch’’] <- log(scallops$tcatch+1)
s>summary (myscallops$lgcatch)

>hist (myscallops$lgcatch)

This histogram exhibits much more symmetry than the earlier one, sug-
gesting a normality assumption we might make later when kriging will be
easier to accept.

We next plot the locations as an ordinary line plot:

>plot (myscallops$long, myscallops$lat)

For spatial purposes, we actually need a geographic information system
(GIS) interface. This is offered by the S-plus library maps. We next invoke

is lib and extract a map of the U.S. from it.
2.5 Computer tutorials this library P

>library(maps)

2.5.1 EDA and variogram fitting in S+SpatialStats >map(‘ ‘usa’’)

For our data, however, we do not need the map of the entire U.S. Looking
at the earlier summary of scallops, we note the range of the latitude and
longitude variables and decide upon the following limits. Note that x1im
sets the z-axis limits and ylim sets the y-axis limits; the c() function
creates vectors.

>map(‘ ‘usa’’, xlim=c(-74, -71), ylim=c(38.2, 41.5))

The observed sites may be embedded on the map, reducing their size some-
what using the cex (“character expansion”) option:

In this section we outline the use of the S+SpatialStats package in per-
forming exploratory analysis on spatially referenced data. Throughout we
use a “computer tutorial” style, as follows.

First, we need to load the spatial module into the S-plus environment:

>module(spatial)

The scallops data, giving locations and scallop catches in the Atlantic wa-
ters off the coasts of New Jersey and Long Island, New York, is preloaded
as a data frame in S-plus, and can therefore be accessed directly. For

example, a descriptive summary of the data can be obtained by typing >points(myscallops$long, myscallops$lat, cex=0.75)

It is often helpful to add contour lines to the plot. In order to add such
lines it is necessary to carry out an interpolation. This essentially fills in the
gaps in the data over a regular grid (where there are no actual observerd
data) using a bivariate linear interpolation. This is done in S-plus using
the interp function. The contour lines may then be added to the plot using
the contour command:

>summary (scallops)

In order to present graphs and maps in S-plus we will need to open a graph-
ing device. The best such device is called trellis.device(). Here we draw
a histogram of the variable tcatch in the dataframe scallops. Note the
generic notation a$b for accessing a member b of a dataframe a. Thus the
member tcatch of dataframe scallops is accessed as scallops$tcatch.
We also print the histogram to a .ps file: >int.scp <- interp(myscallops$long,

myscallops$lat, myscallops$lgcatch) -
>contour (int.scp, add=T)

Figure 2.12 shows the result of the last four commands, i.e., the map of the
scallop locations and log catch contours arising from the linear interpola-
tion.

Two other useful ways of looking at the data may be through image and
perspective (three-dimensional surface) plots. Remember that they will

use the interpolated object so a preexisting interpolation is also compulsory
here.

>trellis.device()
>hist(scallops$tcatch)
>printgraph(file=‘ ‘histogram.tcatch.ps’’)

Noticing the data to be highly skewed, we feel the need to create a new vari-
able log(tcatch). But since tcatch contains a number of 0’s, we instead:
compute log(tcatch + 1). For that it is best to create our own dataframe
since it is not a good idea to “spoil” S-plus’ own dataframe. As such we
assign.scallops to myscallops. Then we append the variable 1gcatch



54 BASICS OF POINT-REFERENCED DATA MODELS'

Y .
g

Figure 2.12 Map of observed scallop sites and contours of (linearly interpolated)
raw log catch data, scallop data.

>image(int.scp)
>persp(int.scp)

The empirical variogram can be estimated in both the standard and “ro-
bust” (Cressie and Hawkins) way with built-in functions. We first demon-
strate the standard approach. After a variogram object is created, typing
that object yields the actual values of the variogram function with the
distances at which they are computed. A summary of the object may be
invoked to see information for each lag, the total number of lags, and the
maximum intersite distance.

>scallops.var <- variogram(lgcatch“loc(long,1at),
data=myscallops)

>scallops.var

>summary (scallops.var)

In scallops.var, distance corresponds to the spatial lag (h in our usual
notation), gamma is the variogram (h), and np is the number of points in
each bin. In the output of the summary command, maxdist is the largest
distance on the map, nlag is the number of lags (variogram bins), and lag
is maxdist/nlag, which is the width of each variogram bin.

By contrast, the robust method is obtained simply by specifying

“robust”
in the method option: :
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Figure 2.13 Ordinary (a) and robust (b) empirical variograms for the scallops

data.

>scallops.var.robust <- variogram(lgcatch~loc(long,lat),
data=myscallops, method = ‘‘robust’’)

Plotting is usually done by just calling the plot function with the variogram
object as its argument. It may be useful to compare the plots one below
the other. Setting up these plots is done as follows: ’

>par (mfrow=c(1,2))

>plot(scallops.var)
>plot(scallops.var.robust)
>printgraph(file="scallops.empvario.ps”)

The output from this picture is shown in Figure 2.13.

The covariogram (a plot of an isotropic empirical covariance function
(2.15) versus distance) and correlogram (a plot of (2.15) divided by ¢(0)
versus distance) may be created using the covariogram and correlogram
functions. (When we are through here, we set the graphics device back to
having one plot per page using the par command.)

>scallops.cov <= covariogram(lgcatch™loc(long,lat),
data=myscallops)

>plot(scallops.cov)

>scallops.corr <- correlogram(lgcatch~loc(long,lat),
data=myscallops)

>plot(scallops.corr)

>printgraph(file="scallops.covariograms.ps")

> par (mfrow=c(1,1))

Theoretical variograms may also be computed and compared to the ob-
served data as follows. Invoke the model . variogramfunction and choose an
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initial theoretical model; say, range=0.8, sill=1.25, and nugget=0.50. Note
that the fun option specifies the variogram type we want to work with.
Below we choose the spherical (spher.vgram); other options include ex.
ponential (exp.vgram), Gaussian (gauss.vgram), linear (linear.vgram),
and power (power.vgram).

Recall that the scallops data is preloaded as a data frame in S-plus,
and a descriptive summary of this data set can be obtained by typing

s>summary (scallops)
while the first row of the data may be seen by typing

s>scallops(i,]

Recall from our Section 2.5.1 tutorial that the data on tcatch was highly
skewed, so we needed to create another dataframe called myscallops, which
includes the log transform of tcatch (or actually log(tcatch+1)). We called
this new variable 1gcatch. We then computed both the regular empirical
variogram and the “robust” (Cressie and Hawkins) version, and compared
poth to potential theoretical models using the variogram command.

>model.variogram(scallops.var.robust, fun=spher.vgram,
range=0.80, sill=1.25, nugget = 0.50)

We remark that this particular model provides relatively poor fit to the
data; the objective function takes a relatively high value (roughly 213).
(You are asked to find a better-fitting model in Exercise 7.)

Formal estimation procedures for variograms may also be carried out by

invoking the nls function on the spher.fun function that we can ¢ :
g P reate: >scallops.var.robust <~ variogram(lgcatch~loc(long,lat),

>spher.fun <- function(gamma,distance,range,sill,nugget){ data=myscallops, method = ¢ ‘robust’’)

gamma - spher.vgram(distance, range=range,
sill=sill, nugget=nugget)}

>scallops.nll <- nls(“spher.fun(gamma, distance, range,
sill, nugget), data = scallops.var.robust,
start=1ist(range=0.8, sill=1.05, nugget=0.7))

-»coef (scallops.nll)

Plotting is usually done using the plot function on the variogram object:

strellis.device()
>plot(scallops.var.robust)

Next we recall S-plus’ ability to compute theoretical variograms. We in-
voke the model.variogram function, choosing a theoretical starting model
(here, range=0.8, sill=4.05, and nugget=0.80), and using fun to specify the
variogram type.
>model.variogram(scallops.var.robust, fun=spher.vgram,
range=0.80, sill=4.05, nugget = 0.80)
>printgraph(file=‘‘scallops.variograms.ps’’)

’

Thus we are using nls to minimize the squared distance between the
theoretical and empirical variograms. Note there is nothing to the left of
the “™ character at the beginning of the nls statement.

Many times our interest lies in spatial residuals, or what remains after
detrending the response from the effects of latitude and longitude. An easy
way to do that is by using the gam function in S-plus. Here we plot the
residuals of the scallops lgcatch variable after the effects of latitude and
longitude have been accounted for:

The output from this command (robust empirical semivariogram with this
theoretical variogram overlaid) is shown in Figure 2.14. Note again the
model.variogram command allows the user to alter the theoretical model
and continually recheck the value of the objective function (where smaller
values indicate better fit of the theoretical to the empirical).

Formal estimation procedures for variograms may also be carried out by
invoking the nls function on the spher.fun function that we create:

>gam.scp <- gam(lgcatch™lo(long)+lo(lat), data= myscallops)
>par (mfrow=c(2,1))
>plot(gam.scp, residuals=T, rug=F)

Finally, at the end of the session we unload the spatial module, after which

we can either do other work, or quit >spher.fun <~ function(gamma,distance,range,sill,nugget){
? * .

gamma - spher.vgram(distance, range=range,
sill=sill, nugget=nugget)}
>scallops.nll <- nls("spher.fun(gamma, distance, range,
sill, nugget), data = scallops.var.robust;
start=1list(range=0.8, sil11=4.05, nugget=0.8))
>summary (scallops.nll)

>module(spatial, unload=T)
>qQ)

2.5.2 Kriging in S+SpatialStats

We now present a tutorial in using S+SpatialStats to do basic kriging.
At the command prompt type S-plus to start the software, and load the
spatial module into the environment:

We now call the kriging function krige on the variogram object to pro-
duce estimates of the parameters for ordinary kriging:
¢+ >scallops.krige <- krige(lgcatch™loc(long,lat),

.>module(spatial) data=myscallops, covfun=spher.cov, range=0.71,
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the header=T option. Having done that we may call the predict function,

° specifying our newdata data frame using the newdata option:
) ) spewdata <- read.table(‘‘newdata.txt’’, header=T)
] T >scallops.predicttwo <- predict(scallops.krige,
] : ° a - newdata=newdata)
: ° o scallops.predicttwo then contains the prediction?, and associated stan-
: dard errors for the two new sites, the latter of which are ordered as we
) ’ Q icipated.
- o anggft?twe consider the case where we wish to predict not at a few specific
8 locations, but over a fine grid of sites, thus enabling a prediction surface.
Tn such a situation one can use the expand.grid function, but the interp
function seems to offer an easier and less error-prone approach. To do this,
i 5 we first call the predict function without the newdata option. After (fheck~
ing the first row of the scallops.predict object, we collect the coordinates
N D and the predicted values into three vectors x, y, and z. We then invoke the
interp and persp functions:
7 objective = 10.3518 >scallops.predict <~ predict(scallops.krige)
‘ . . ‘ l ' ' ' >scallops.predict[1,]
, . 00 0.2 0.4 0.6 0.8 1.0 12 14 S eailops.predictl,1]
- distance

>y <- scallops.predict[,2]

..>z <~ scallops.predict(,3]

~ >scallops.predict.interp <- interp(x,y,z)
~.>persp(scallops.predict.interp)

It may be useful to recall the location of the sites and the surface plot of
the raw data for comparison. We create these plots on a separate graphics
device:

>trellis.device()

>plot (myscallops$long, myscallops$lat)

“>int.scp <- interp(myscallops$long, myscallops$lat,

" myscallops$lgcatch)

>persp(int.scp)

Figure 2.14 Robust empirical and theoretical (spherical) variograms for the sca
lops data.

nugget=0.84, sill=4.53)

Note that the covfun option here specifies an intrinsic spherical covari-
ance function. Now suppose we want to predict the response at a small
collection of new locations. We need to create a new text file containing
the latitudes and longitudes for these new locations. We maust label the
coordinates as lat and long, exactly matching the names in our original
dataframe myscallops. Download the file ’

www.biostat.umn.edu/ brad/data/newdata.txt

from the web, and save the file as newdata.txt. The file contains two new Figure 2.15 shows these two perspective plots side by side for comparison.

locations: The predicted surface on the left is smoother, as expected.
It is also useful to have a surface plot of the standard errors, since we
long 1lat expect to see higher standard errors where there is less data. This is well
~71.00 40.0 illustrated by the following commands:
~72.75 39.5

>z.se <~ scallops.predict[,4]
>scallops.predict.interp.se <~ interp(x,y,z.se)
>persp(scallops.predict.interp.se)

Here the first site is far from the bulk of the observed data (so the
predicted values should have high standard errors), while the second sit
is near the bulk of the observed data (so the predicted values should hav
low standard errors).

Next we create a data frame called newdata that reads in the new se
of sites using the read.table function in S-plus, remembering to includ

Other plots, such as image plots for the prediction surface with added
contour lines, may be useful:

>image(scallops.predict.interp)
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Figure 2.15 Perspective plots of the kriged prediction surface (a) and znterpolated
raw data (b), log scallop caich data.

>par (new=T, xaxs=‘‘d’’, yaxs=‘‘d’’)
“Zcontour (scallops.predict.interp)

Turning to universal kriging, here we illustrate with the scallops data
using latitude and longitude as the covariates (i.e., trend surface modeling).

Our covariance matrix X is therefore n X 3 (n = 148 here) with columns
corresponding to the intercept, latitude and longitude.

>scallops.krige.universal <- krige(lgcatch™loc(long,lat)
+long+lat, data=myscallops, covfun=spher.cov,
range=0.71, nugget=0.84, sill=4.53)

Note that the scallops.krige.universal function gives point esti-
mates, but not associated standard errors. You are asked to remedy this
situation in Exercise 11.

Plots like those already seen for ordinary kriging may be done as well. It
is also useful to produce a spatial surface of the standard errors of the fit.

>scallops.predict.universal

<- predict(scallops.krige.universal)
>scallops.predict.universal[1,]
>x <~ scallops.predict.universalfl,1]
>y <- scallops.predict.universall,2]
>z <~ scallops.predict.universall[,3]
>scallops.predict.interp <~ interp(x,y,z)
>persp(scallops.predict.interp)
>q0)
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9.5.8 EDA, variograms, and kriging in geoR

R is an increasing popular freeware alternative to S—plus, available from
the web at www.r-project.org. In this subsection we describe methods
for lriging and related geostatistical operations available in geoR, a geo-
statistical data analysis package using R, which is also freely available on
the web at www.est.ufpr.br/geoR/.

Since the syntax of S-plus and R is virtually identical, we do not spend
time here repeating the material of the past subsection. Rather, we only
highlight a few differences in exploratory data analysis steps, before moving
on to model fitting and kriging.

Consider again the scallop data. We recall that it is often helpful to create
image plots and place contour lines on the plot. These provide a visual idea
of the realized spatial surface. In order to do these, it is necessary to first
carry out an interpolation. This essentially fills up the gaps (i.e., where
there are no points) using a bivariate linear interpolation. This is done
using the interp.new function in R, located in the library akima. Then the
contour lines may be added to the plot using the contour command. The
results are shown in Figure 2.16.

>library(akima)

>int.scp_interp.new(myscallops$long, myscallops$lat,
myscallops$lgcatch, extrap=T)

>image (int.scp, xlim=range(myscallops$long),
ylim=range(myscallops$lat))

>contour (int.scp, add=T)

Another useful way of looking at the data is through surface plots (or
perspective plots). This is done by invoking the persp function:

>persp(int.scp, xlim=range(myscallops$long),
ylim=range (myscallops$lat))

The empirical variogram can be estimated in the classical way and in
the robust way with in-built R functions. There are several packages in
R that perform the above computations. We illustrate the geoR package,
mainly because of its additional ability to fit Bayesian geostatistical models
as well. Nevertheless, the reader might want to check out the CRAN web-
site (http://cran.us.r-project.org/) for the latest updates and several
other spatial packages. In particular, we mention fields, gstat, sgeostat,
spatstat, and spatdep for exploratory work and some model fitting of
spatial data, and GRASS and RArcInfo for interfaces to GIS software.

Returning to the problem of empirical variogram fitting, we first invoke
the geoR package. We will use the function variog in this package, which
takes in a geodata object as input. To do this, we first create an object, obj,
with only the coordinates and the response. We then create the geodata



. Fi’gurig 2.16 An image plot of the scallops datae, with contour lines super-imposed.

object using the as.geodata function, specifying the columns holding the
coordinates, and the one holding the response.

as in Figure 2.17) can be obtained as follows:

correlogram functions. The remaining syntax is the same as in S-plus.
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Figure 2.17 Plots of the empirical semivariograms for the scallops data: (a) clas-
sical; (b) robust.

parameters under a specified covariance model. A variogram object (typi-
cally an output from the variog function) is taken as input, together with
initial values for the range and sill (in ini.cov.pars), and the covari-
ance model is specified through cov.model. The covariance modeling op-
tions include exponential, gaussian, spherical, circular, cubic, wave,
power, powered.exponential, cauchy, gneiting, gneiting.matern, and
pure.nugget (no spatial covariance). Also, the initial values provided in
ini.cov.pars do not include those for the nugget. It is concatenated with
the value of the nugget option only if fix.nugget=FALSE. If the latter is
TRUE, then the value in the nugget option is taken as the fixed true value.
Thus, with the exponential covariance function for the scallops data, we
can estimate the parameters (including the nugget effect) using
>scallops.var.fit variofit(scallops.var.robust,
ini.cov.pars = ¢(1.0,50.0), cov.model=’ ’exponentlal’ ?
fix.nugget=FALSE, nugget=1.0)

The output is given below. Notice that this is the weighted least squares
approach for fitting the variogram:

>obj_cbind(myscallops$long,myscallops$lat,
myscallops$lgcatch)

>scallops.geo.as.geodata(myscallops,coords.col=1:2,
data.col=3)

Now, a variogram object is created.

>scallops.var.variogram(scallops.geo,
estimator.type=’’classical’’)

>scallops.var

The robust estimator (see Cressie, 1993, p.75) can be obtained by typing

>scallops.var.robust variogram(scallops.geo,
estimator.type=’’modulus’’)

A plot of the two semivariograms (by both methods, one below the other,

>par (mfrow=c(2,1))
>plot(scallops.var)

>plot(scallops.var.robust) variofit: model parameters estimated by WLS

(weighted least squares): '
covariance model is: matern with fixed kappa = 0.5
(exponential)

Covariograms and correlograms are invoked using the covariogram and

The function variofit estimates the sill, the range, and the nugget



64 BASICS OF POINT-REFERENCED DATA MODELS

parameter estimates:
tausq sigmasq phi
0.0000 5.1289 0.2160

Likelihood model fitting

In the previous section we saw parameter estimation through weighted least
squares of variograms. Now we introduce likelihood-based and Bayesian
estimation functions in geoR. :

Both maximum likelihood and REML methods are available through the
geoR function likfit. To estimate the parameters for the scallops data,
we invoke

>scallops.lik.fit 1ikfit(scallops.geo,
ini.cov.pars=c(1.0,2.0),cov.model = ¢ ‘exponential’’,
trend = ‘‘cte’’, fix.nugget = FALSE, nugget = 1.0,
nospatial = TRUE, method.lik = ¢‘ML’’)

The option trend = ‘‘cte’’ means a spatial regression model with con-
sstant mean. This yields the following output:

> .3 scallops.lik.fit

1likfit: estimated model parameters:
beta tausq sigmasq phi
2.3748 0.0947 5.7675 0.2338

Changing method.1ik = ¢ ‘REML’’ yields the restricted maximum likeli-
hood estimation. Note that the variance of the estimate of beta is available
by invoking scallops.lik.fit$beta.var, so calculating the confidence
interval for the trend is easy. However, the variances of the estimates of the
covariance parameters is not easily available within geoR.

Kriging in geoR

There are two in-built functions in geoR for kriging: one is for classical or
conventional kriging, and is called krige.conv, while the other performs
Bayesian kriging and is named krige.bayes. We now briefly look into these
two types of functions. The krige.bayes function is not as versatile as
WinBUGS in that it is more limited in the types of models it can handle,
and also the updating is not through MCMC methods. Nevertheless, it
is a handy tool and already improved upon the aforementioned likelihood
methods by providing posterior samples of all the model parameters, which
lead to estimation of their variability.

The krige.bayes function can be used to estimate parameters for spatial
regression models. To fit a constant mean spatial regression model for the

scallops data, without doing predictions, we invoke krige.bayes specifying
a’ constant trend, an exponential covariance model, a flat prior for the
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constant trend level, the reciprocal prior for sigmasq (Jeffrey’s), and a
discrete uniform prior for tausq.
>scallops.bayesl <- krige.bayes(scallops.geo,

locations = ‘‘no’’, borders = NULL, model =
model.control{trend.d = ‘‘cte’’,
cov.model = ‘‘exponential’’),
prior = prior.control(beta.prior = ‘‘flat’’,
sigmasq.prior = ‘‘reciprocal’’,
tausq.rel.prior = ‘‘uniform’’,
tausq.rel.discrete=seq(from=0.0,to=1.0,by=0.01)))

We next form the quantiles in the following way:

out_scallops.krige.bayes$posterior

out_out$sample

beta.qnt.quantile(out$beta, c(0.50,0.025,0.975))
phi.gnt_quantile(out$phi, c(0.50,0.025,0.975)) -
sigmasq.qgnt._quantile(out$sigmasq, ¢(0.50,0.025,0.975))
tausq.rel.qnt.quantile(out$tausq.rel,
c(0.50,0.025,0.975))

beta.qnt

VVVVVYV

\%

50% 2.5% 97.5%
1.931822 -6.426464 7.786515

> phi.qgnt

50% 2.5% 97.5%
0.5800106 0.2320042 4.9909913

sigmasqg.qgnt

50% 2.5% 97.5%
11.225002 4.147358 98.484722

> tausg.rel.qnt

50% 2.5% 97.5%
0.03 0.00 0.19

Note that tausq.rel refers to the ratio of the nugget variance to the
spatial variance, and is seen to be negligible here, too. This is consistent
with all the earlier analysis, showing that a purely spatial model (no nugget)
would perhaps be more suitable for the scallops data.

2.6 Exercises
1. For semivariogram models #2, 4, 5, 6, 7, and 8 in Subsection 2.1.3,

(2) identify the nugget, sill, and range (or effective range) for each;
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(b) find the covariance function C(£) corresponding to each y(t), provided

(a) Provide a descriptive summary of the scallops data with the plots
it exists.

derived from the above session.
(b) Experiment with the model.variogranm function to obtain rough es-
timates of the nugget, sill, and range; your final objective function
should have a value less than 9.
() Repeat the theoretical variogram fitting with an exponential vari-
ograim, and report your results.

9. Prove that for Gaussian processes, strong stationarity is equivalent to
weak stationarity.

3. Consider the triangular (or “tent”) covariance function,

o2(1— |kl /8) i IRl <6, 0%>0,6>0,
C(lIAlD ={ ( 0” ! if ||hl| > 6 g g

Tt is valid in one dimension. (The reader can verify that it is the char-
acteristic function of the density function f(z) proportional to 1 —
cos(8z)/dz%.) Now in two dimensions, consider a 6 x 8 grid with lo-
cations sj; = (jé/\/i,ké/\/’i), j=1,...,6, k= 1,...,8. Assign aj; to
s;i such that ajx = 1if j+k is even, ajr = —1if j +k is odd. Show that
Vv ar[EajkY(Sjk)] < 0, and hence that the triangular covariance function
is invalid in two dimensions.

4. The turning bands method (Christakos, 1984; Stein, 1999a) is a technique
for creating stationary covariance functions on ®". Let u be a random
unit-vector on ®" (by random we mean that the coordinate vector that
defines u is randomly chosen on the surface of the unit sphere in R).
Let c(-) be a valid stationary covariance function on %!, and let W(z)
be a process on $! having c(-) as its covariance function. Then for any
location s € &7, define

8. Consider the coal.ash data frame built into S+SpatialStats. This data
comes from the Pittsburgh coal seam on the Robena Mine Property in
Greene County, PA (Cressie, 1993, p. 32). This data frame contains 208
coal ash core samples (the variable coal in the data frame) collected on
~ agrid given by T and y planar coordinates (not latitude and longitude).

Carry out the following tasks in S-plus:

(a) Plot the sampled sites embedded on a map of the region. Add contour
Tines to the plot. -

(b) Provide a descriptive summary (histograms, stems, quantiles, means,
range, etc.) of the variable coal in the data frame.

(c) Plot variograms and correlograms of the response and comment on
the need for spatial analysis here.

(d) I you think that there is need for spatial analysis, use the interactive
model . variogram method in S-plus to arrive at your best estimates

Y(s) = W(s"u) . of the range, nugget, and sill. Report your values of the objective

Note that we can think of the process either conditionally given u, or functions. ‘ -
marginally by integrating with respect to the uniform distribution for (e) Try to estimate the above parameters using the nis procedure in
1. Note also that Y (s) has the possibly undesirable property that it is S-plus.

: Ty=Fk
constant on planes (i.e., on 571 = k). Hint: You may wish to look at Section 3.2 in Kaluzny et al. (1998) for

some insight into the coal.ash data.

9. Confirm expressions (2.18) and (2.19), and subsequently verify the form
for A given in equation (2.20).

10. Show that when using (2.18) to predict the value of the surface at one of

the existing data locations s;, the predictor will equal the observed value

at that location if and only if 72 = 0. (That is, the usual Gaussian process

is a spatial interpolator only in the “noiseless prediction” scenario.)

(a) HWisa Gaussian process, show that, given u, Y (s) is also a Gaussian
process and is stationary.

(b) Show that marginally Y (s) is not 2 Gaussian process, but is isotropic.
[Hint: Show that Cov(Y (s),Y(s") = Buc((s — &' Yu).]

5.(a) Based on (2.10), show that c12 (h) is a valid correlation function; i.e.,
that G is a bounded, positive, symmetric about 0 measure on R2.

(b) Show further that if ¢; and ¢, are isotropic, then ez 15 11. Tt is an unfortunate feature of S+SpatialStats that there is no intrinsic

routine to automatically obtain the standard errors of the estimated
regression coefficients in the universal kriging model. Recall that
Y = XpB+e€, where e~N(0,%),
and ¥ = o2H($)+7°I, where (H(9));; = p (¢ dij) -

6.(a) What is the issue with regard to specifying ¢(0) in the covariance
function estimate (2.15)7

(b) Show either algebraically or numerically that regardless of how €(0)
is obtained, F(tr) # €(0) — 2(ty,) for all t.

7. Carry out the steps outlined in Section 2.5.1 in S+SpatialStats. In

addition: Thus the dispersion matrix of B is given as Var(B) = (XTE71X) -
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Thus Var(B) = (XTﬁ“lX) ' where £ = 2H($) + 72 and X =
[1,long, lat]. Given the estimates of the sill, range, and nugget (from
the nls function), it is possible to estimate the covariance matrix 5,
and thereby get ﬁ'(ﬁ). Develop an S-plus or R program to perform

this exercise to obtain estimates of standard errors for 3 for the scallops
data.

CHAPTER 3

Hint: 72 is the nugget; 5 is the partial sill (the sill minus the nugge) Basics of areal data models
Finally, the correlation matrix H (@) can be obtained from the spherical

covariance function, part of your solution to Exercise 1.

Note: Tt appears that S+SpatialStats uses the ordinary Euclidean (not
geodesic) metric when computing distance, so you may use this as well
when computing H (:ﬁ\). However, you may also wish to experiment with
geodesic distances here, perhaps using your solution to Chapter 1, Ex-
ercise 7.

We now present a development of exploratory tools and modeling ap-
proaches that are customarily applied to data collected for areal units.
We have in mind general, possibly irregular geographic units, but of course
include the special case of regular grids of cells (pixels). Indeed, the ensuing
models have been proposed for regular lattices of points and parameters,
and sometimes even for point-referenced data (see Appendix A, Section A.5
on the problem of inverting very large matrices).

In the context of areal units the general inferential issues are the follow-
ing:

(i) Is there spatial pattern? If so, how strong is it? Intuitively, “spatial
pattern” suggests measurements for areal units that are near to each
other will tend to take more similar values than those for units far from
each other. Though you might “know it when you see it,” this notion is
evidently vague and in need of quantification. Indeed, with independent
measurements for each unit we expect to see no pattern, i.e., a completely
random arrangement of larger and smaller values. But again, randomness
will inevitably produce some patches of similar values.

(ii) Do we want to smooth the data? If so, how much? Suppose, for example,
that the measurement for each areal unit is a count, say, a number of
cancers. Even if the counts were independent, and perhaps even after
population adjustment, there would still be extreme values, as in any
sample. Are the observed high counts more elevated than would be ex-
pected by chance? If we sought to present a surface of expected counts
we might naturally expect that the high values would tend to be pulled
down, the low values to be pushed up. This is the notion of smoothing.
No smoothing would present a display using simply the observed counts.
Maximal smoothing would result in a single common value for all units,
clearly excessive. Suitable smoothing would fall somewhere in between,
and take the spatial arrangement of the units into account.

Of course, how much smoothing is appropriate is not readily defined.
In particular, for model-based smoothers such as we describe below, it
is not evident what the extent of smoothing is, or how to control it.



