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Thus Var(B) = (XT.SZ‘—lX) " where 5 = G2H($) + 721 and X =
[1,1ong, lat]. Given the estimates of the sill, range, and nugget (from
the nls function),/\it 1§ possible to estimate the covariance matrix 5
and thereby get Var(B8). Develop an S-plus or R program to perfom;

this exercise to obtain estimates of standard errors for ﬁ for the scallops
data. ‘

CHAPTER 3

Hint: #2 is the nugget; 5° is the partial il (the sill minus the nugget) Basics of areal data models
Finally, the correlation matrix H(¢) can be obtained from the spherical

covariance function, part of your solution to Exercise 1.

Note: I.t appears that S+SpatialStats uses the ordinary Euclidean (not
geodesic) metric when computing distance, so you may use this as well

-~

when computing H(¢). However, you may also wish to experiment with

geodesic distances here, perhaps using your solution to Chapter 1, Ex-
ercise 7.

We now present a development of exploratory tools and modeling ap-

proaches that are customarily applied to data collected for areal units.

We have in mind general, possibly irregular geographic units, but of course

include the special case of regular grids of cells (pixels). Indeed, the ensuing

models have been proposed for regular lattices of points and parameters,

and sometimes even for point-referenced data (see Appendix A, Section A.5

on the problem of inverting very large matrices).

In the context of areal units the general inferential issues are the follow-
ing:

(i) Is there spatial pattern? If so, how strong is it? Intuitively, “spatial
pattern” suggests measurements for areal units that are near to each
other will tend to take more similar values than those for units far from
each other. Though you might “know it when you see it,” this notion is
evidently vague and in need of quantification. Indeed, with independent
measurements for each unit we expect to see no pattern, i.e., a completely
random arrangement of larger and smaller values. But again, randomness
will inevitably produce some patches of similar values.

(ii) Do we want to smooth the data? If so, how much? Suppose, for example,
that the measurement for each areal unit is a count, say, a number of
cancers. Even if the counts were independent, and perhaps even after
population adjustment, there would still be extreme values, as in any
sample. Are the observed high counts more elevated than would be ex-
pected by chance? If we sought to present a surface of expected counts

_we might naturally expect that the high values would tend to be pulled
down, the low values to be pushed up. This is the notion of smoothing.
No smoothing would present a display using simply the observed counts.
Maximal smoothing would result in a single common value for all units,
clearly excessive. Suitable smoothing would fall somewhere in between,
and take the spatial arrangement of the units into account.

Of course, how much smoothing is appropriate is not readily defined.
In particular, for model-based smoothers such as we describe below, it
is not evident what the extent of smoothing is, or how to control it.
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Specification of a utility function for smoothing (as attempted in Stern ochastic, i.e., ,

and Cressie, 1999) would help to address these questions.

(iii) For a new areal unit or set of units, how can we infer about what dats
values we expect to be associated with these units? That is, if we mod;
the areal units to new units, e.g., from zip codes to census block groups,
what can we say about the cancer counts we expect for the latter given
those for the former? This is the so-called modifiable areal unit problem,
(MAUP), which historically (and in most GIS software packages) is han.
dled by crude areal allocation. Sections 6.2 and 6.3 propose model-based
methodology for handling this problem.

then evidently W is row st
etric. . '
Syirsnthe notation suggests, the entries in W can be viewed ast W?%ﬁ?;
ioht will be associated with §’s closer (in some sense) to o

Niore Wetgher away from 4. In this exploratory context (but, as we sh-
thosemf:fe generally) W provides the mechanism for introducing spatial
zift,lcture into our formal modeling. N
Lastly, working with distance suggests thfit we can define s amOf ﬁ,«sti

c’l] (d1,da); (d2,ds), and so on. This gnables the npmon :
say, (0 i };bor; of unit 1, i.e., all units within distance d; of 1, ‘seco?zd—or er
ml;;:;ﬁiig ie., all units’more than d; but at most dz from 2, third-order

- nel y 15

eighbors and so on. Analogous to W we can define W) as the proximity
n 3

- 1 op - . ~
matrix for first-order neighbors. That is, ng) = 1 if ¢ and j are first

i imilarly we define W
order neighbors, and equal to 0 otherw1§e. Smﬂar(gr) e ot
the proximity matrix for second-order neighbors; w;;" = mnd J e
order neighbors, and 0 otherwise, and so on to create W Wi,

As a matter of fact, in order to facilitate interpretation and better assess
uncertainty, we will suggest model-based approaches to treat the above ig-
sues, as opposed to the more descriptive or algorithmic methods that haye
dominated the literature and are by now widely available in GIS software
packages. We will also introduce further flexibility into these models by
examining them in the context of regression. That is, we will assume that
we have available potential covariates to explain the areal unit responses.
These covariates may be available at the same or at different scales from
tHe gesponses, but, regardless, we will now question whether there rémaing
any spatial structure adjusted for these explanatory variables. This sug-
gests that we may not try to model the data in a spatial way directly,
but instead introduce spatial association through random effects. This will
lead to versions of generalized linear mixed models (Breslow and Clayton,
1993). We will often view such models in the hierarchical fashion that is
the primary theme of this text.

@) as

“second-

etc. . .
B Of course, the most obvious exploratory data analysis tool for lattice data
k]

i ives the statewide average verbal
i ap of the data values. Figure 3.1 gives the stal
1Sszf\il’.[‘nslc(};)res as reported by the College Board a,?:td initially an.alyze‘ddby \ivili
2004). Clearly these data exhibit strong spatial pattern, vs.nth midweste
gtates ;md Utah performing best, and coastal states and Indlanaia. peziorm;n;i
| j ine to conclusions, we must realize there
Jess well. Of course, before jumping st realise there B
i iates that may help to explain this p ;
any number of spatial covaria : el e D westom
igi dents taking the exam, 10r 1ns
percentage of eligible stu _ e e, Lo and only the
have historically relied on the , o 5 §
%lelte g:zd brightest students in these states WOL‘lld .bother talu.ng the latter
exam). Still, the map of these raw data show significant spatial pattern.

3.1 Exploratory approaches for areal data

‘We begin with the presentation of some tools that can be useful in the ini-
tial exploration of areal unit data. The primary concept here is a prozim-
ity matriz, W. Given measurements Y1,...,Y,, associated with areal units
1,2,...,n, the entries w;; in W spatially connect units ¢ and j in some
fashion. (Customarily w;; is set to 0.) Possibilities include binary choices,
ie., wj; = 11if ¢ and j share some common boundary, perhaps a vertex
(as in a regular grid). Alternatively, w;; could reflect “distance” between
units, e.g., a decreasing function of intercentroidal distance between the
units (as in a county or other regional map). But distance can be returned
to a binary determination. For example, we could set w;; = 1 for all i and j
within a specified distance. Or, for a given 4, we could get w;; = 1 if j is one
of the K nearest (in distance) neighbors of 4. The preceding choices suggest
that W would be symmetric. However, for irregular areal units, this last
example provides a setting where this need not be the case. Also, the w;;’s

may be standardized by Zj wij = wiy. If W has entries Wij = Wij[Wits

9.1.1 Measures of spatial association

Two standard statistics that are used to measure’ strength of sp;i;all assi)cgal—
tion among areal units are Moran’s I and Ggary s C (see, eg: pley, iatior;
Sec. 5.4). These are spatial analogues of statlstlf:s for measuring ;sso‘;, ation
in time series, the lagged autocorrelation coefficient and the ]?ur 1;11—0 tsor
statistic, respectively. They can also be. seen to pe areal 1}11mt an ;g; o
the empirical estimates for the correlation function and t fa.v:ilograri;nce
spectively. Recall that, for point-referenced data, .the empm‘cd . coxsftomary
function (2.15) and semivariogram (2.9), respecmve'aly,' provide cu
nonparametric estimates of these measures of association.
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F;ig;ure 3.1 Choropleth map of 1999 average verbal SAT scores, lower 48 U.S
states. .

7

Moran’s I takes the form
r o2 wiE(Yi - Y)(Y; - Y)
(Zi#j w,-,-) >i(Yi-Y)?

I is not strictly supported on the interval [—1, 1]. It is evidently a ratio
of quadratic forms in Y that provides the idea for obtaining approximate
first and second moments through the delta method (see, e.g., Agresti,
:‘2002, Ch. 14). Moran shows under the null model where the Y; are i.i.d. I,
is asymptotically normally distributed with mean —1/(n —1) and a rath’er
unattractive variance of the form

(3.1)

_ n*(n—1)S; —n(n —1)8, — 252
Var(I) = o ; n 1752 0 (3.2)

In (3.2),950 = Zi#j Wiy, Sy = ézi#(wij +wj,~)2, and S, = Zk(z_j Wi +
> ; Wir)?. We recommend the use of Moran’s I as an exploratory measure
of spatial association, rather than as a “test of spatial significance.”

. For the data mapped in Figure 3.1, we used the spatial.cor function
in S+SpatialStats (see Section 2.5) to obtain a value for Moran’s I of
0.5833, a reasonably large value. The associated standard error estimate

of O..0920 suggests very strong evidence against the null hypothesis of no
spatial correlation in these data.
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Geary’s C takes the form

_ =13 > wig (Vs = ¥5)? .
(Zi;éj wi]‘) Y- Y)?

( is never negative, and has mean 1 for the null model; low values (i.e.,
petween O and 1) indicate positive spatial association. Also, C is a ratio
of quadratic forms in Y and, like I, is asymptotically normal if the Y;
are 1.i.d. We omit details of the distribution theory, recommending the
interested reader to Cliff and Ord (1973), or Ripley (1981, p. 99).

Again using the spatial.cor function on the SAT verbal data in Fig-
are 3.1, we obtained a value of 0.3775 for Geary’s C, with an associated
standard error estimate of 0.1008. Again, the marked departure from the
mean of 1 indicates strong positive spatial correlation in the data.

If one truly seeks to run a significance test using (3.1) or (3.3), our
recommendation is a Monte Carlo approach. Under the null model the dis-
tribution of I (or C) is invariant to permutation of the Y;’s. The exact
pull distribution of I (or C) requires computing its value under all n! per-
mutation of the Y;’s, infeasible for n in practice. However, a Monte Carlo
sample of say 1000 permutations, including the observed one, will position
the observed I (or C) relative to the remaining 999, to determine whether
it is extreme (perhaps via an empirical p-value). Again using spatial.cor
function on our SAT verbal data, we obtained empirical p-values of 0 using
both Moran’s I and Geary’s C; no random permutation achieved I or C'
scores as extreme as those obtained for the actual data itself.

A further display that can be created in this spirit is the correlogram.
Working with say I, in (3.1) we can replace w;; with the previously defined
wg) and compute say I(). Similarly, we can replace w;; with wg) and
obtain I®. A plot of I(" vs. 7 is called a correlogram and, if spatial
pattern is present, is expected to decline in r initially and then perhaps
vary about 0. Evidently, this display is a spatial analogue of a temporal lag
autocorrelation plot (e.g., see Carlin and Louis, 2000, p. 181). In practice,
the correlogram tends to be very erratic and its information context is often
not clear.

With large, regular grids of cells as we often obtain from remotely sensed
imagery, it may be of interest to study spatial association in a particular
direction (e.g., east-west, north-south, southwest-northeast, etc.). Now the
spatial component reduces to one dimension and we can compute lagged
autocorrelations (lagged appropriately to the size of the grid cells) in the
specific direction. An analogue of this was proposed for the case where
the ¥; are binary responses (e.g., presence or absence of forest in the cell)
by Agarwal, Gelfand, and Silander (2002). In particular, Figure 3.2 shows
rasterized maps of binary land use classifications for roughly 25,000 1 km

C

(3.3)
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Figure 3.3 Land use log-odds ratio versus distance in four directions.

Figure 3.2 Rasterized north and south regions (1 km x 1 km) with binary lend

use classification overlaid four directions. Note that the spatial association is quite strong, requiring

5 distance of at least 40 km before it drops to essentially 0. This suggests
that we would not lose much spatial information if we work with the 1'ower
(4 km x 4 km) resolution. In exchange we obtain a richer response variable
(17 ordered levels, indicating number of forested cells from 0 to 16) and
a substantial reduction in number of pixels (from 26,432 to 1, 652 in the
north region, from 24,544 to 1,534 in the south region) to facilitate model
fitting.

x 1 km pixels in eastern Madagascar; see Agarwal et al. (2002) as well as
Section 6.4 for further discussion. '
While the binary map in Figure 3.2 shows spatial pattern in land use,
we develop an additional display to provide quantification. For data on
a regular grid or lattice, we calculate binary analogues of the sample au-
tocovariances, using the 1 km x 1 km resolution with four illustrative
directions: East (E), Northeast (NE), North (N), and Northwest (NW).
Relative to a given pixel, we can identify all pixels in the region in a speci-
fied direction from that pixel and associate with each a distance (Euclidean
distance centroid to centroid) from the given pixel. Pairing the response at
the given pixel (X) with the response at a directional neighbor (Y), we
obtain a correlated binary pair. Collecting all such (X,Y) pairs at a given
direction/distance combination yields a 2 x 2 table of counts. The resultant
log-odds ratio measures the association between pairs in that direction at
that distance. (Note that if we followed the same procedure but reversed di-
rection, e.g., changed from E to W, the corresponding log odds ratio would
be unchanged.) k

In Figure 3.3, we plot log odds ratio against direction for each of the

38.1.2 Spatial smoothers

Recall from the beginning of this chapter that often a goal for, say, a
choropleth map of the Yj’s is smoothing. Depending upon the number of
classes used to make the map, there is already some implicit smoothing in
such a display (although this is not spatial smoothing, of course).

- The W matrix directly provides a spatial smoother; that is, we can re-
place Y; by Y= Zj w;;Yj /wiy. This ensures that the value for areal unit
i “looks like” its neighbors, and that the more neighbors we use in com-
puting f’i, the more smoothing we will achieve. In fact, Y; may be viewed
as an unusual smoother in that it ignores the value actually observed for
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unit 7. As such, we might revise the smoother to

¥ =(1-a)Vi+a¥;, (3.4)

where a € (0,1). Working in an exploratory mode, various choices may he
tried for @, but for any of these, (3.4) is a familiar shrinkage form. Thyg
under a specific model with a suitable loss function, an optimal & could bé ‘
sought. Finally, the form (3.4), viewed generally as a linear combination of
the Yj, is customarily referred to as a filter in the GIS literature. In fact,
such software will typically provide choices of filters, and even a defanlt
filter to antomatically smooth maps.

In Section 4.1 we will present a general discussion revealing how smooth-
ing emerges as a byproduct of the hierarchical models we propose to use
to explain the Y;. In particular, when W is used in conjunction with g
stochastic model (as in Section 3.3), the Y; are updated across 7 and across
Monte Carlo iterations as well. So the observed Y; will affect the eventual
Y;, and a “manual” inclusion of Y; as in (3.4) is unnecessary.

o roper for all ;. As an elementary illustration, consider p(y1,¥2) X
55 PO (s — 92)?). Evidently p(yaly») is N(ya, 1) and p(gsltn) is N (s, 1),
exI;[ (2 ys) is improper. Casella and George (1992) provide a similar ex-
Zrnpfeyi;’ 2 bivariate exponential (instead of normal) setting.

Brook’s Lemma notes that

p@ilyz,--->Un)  PW2y10,35 -+ Yn) (3.7)
P(yl7~--ayn) = ) (20l ey Un)
p(yiolyz, - - - Yn)  PY20[Y10,Y3,---:Yn

. p(ynlylo, .. 7yn—-1,0)

p(y‘rLOlyIO: LR )yn-—l,O)

) p(le) s 7yn0) )

an identity you are asked to check in Exercise 1. Here, yo = (Y10, - - - ,-yng)’
is any fixed point in the support Qf p.(yl, - ,yn.). Hence p(y1, - --,Yn) is de-
termined by the full conditional distributions, since apart from the constant
p(y10- - ,yno) they are the only f)ngcts appearing on the rlght—ha:nd s1.de
of (3.7). Hence the joint distribution is deter.m}ned up to a proportionality
constant. I p(y1, - - - ,yn) is improper then this 1‘s,‘of course, the best we can
do; if p(y1,---» yy) is proper then the fact that it integrates to 1 ;determmes
the constant. Perhaps most important is the constructive nature qf (3.7):
we can create p(¥1,---» yn) simply by calculating the product of ratios. For
more on this point see Exercise 2.

Usually, when the number of areal units is very large (say, a large number
of small geographic regions, or a regular grid of pixels on a screen), we do
not seek to write down the joint distribution of the Y;. Rather we .p.refer
to work (and model) exclusively with the n corresponding full conditional
distributions. In fact, from a spatial perspective we would think that the full
conditional distribution for Y; should really depend only upon the neighbors
of cell i. Adopting some definition of a neighbor structure (e.g., the one
setting W;i; = 1 or 0 depending on whether i and j are adjacent or not),
let 8; denote the set of neighbors of cell 7.

- Next suppose we specify a set of full conditional distributions for the ¥;
such that

3.2 Brook’s Lemma and Markov random fields

A useful technical result for obtaining the joint distribution of the Y; in
some of the models we discuss below is Brook’s Lemma (Brook, 1964). The
usefulness of this lemma is exposed in Besag’s (1974) seminal paper on
conditionally autoregressive models.

It is clear that given p(y1,- . -, Yn), the so-called full conditional distribu-
tions, p(yily;,J #4),4=1,...,n, are uniquely determined. Brook’s Lemma
proves the converse and, in fact, enables us to constructively retrieve the
unique joint distribution determined by these full conditionals. But first, it
is also clear that we cannot write down an arbitrary set of full conditional
distributions and assert that they uniquely determine the joint distribution.
To see this, let Y3 |Ya ~ N(ap+a1Ys,07) and let Ya|Y1 ~ N(Bo+B1Y7,03),
where N denotes the normal (Gaussian) distribution. It is apparent that -

E(Y:) = E[E(Yi|Y)] = Elag + 01Ya] = ap + 01 E(¥3) , (3.5)

i.e., E(Yy) is linear in E(Y2) (hence E(Y3) is linear in E(Y1)). But it must
also be the case that

E(Y:) = E[E(Y2|V1)] = E[fo + fiY1] = fo + BLE(YY) . (3.6)

Equations (3.5) and (3.6) could simultaneously hold only in trivial cases, s0
the two mean specifications are incompatible. Thus we can say that f(y1ly2)
and f(yz|y1) are incompatible with regard to determining p(y1,y2). We do
not propose to examine conditions for compatibility here, although there
has been considerable work in this area (see, e.g., Arnold and Strauss, 1991,
and references therein). :

Another point is that p(y: - . . , ¥n) may be improper even if p(y;|y;,j # %)

p(yiiy_’hj # 7') :p(yiiyjaj € 61) (38)

A critical question to ask is whether a specification such as (3.8) uniquely
determines a joint distribution for ¥1,.. .Y,,. That is, we do not need to
see the explicit form of this distribution. We merely want to be assured
that if, for example, we implement a Gibbs sampler (see Subsection 4.3.1)
 to simulate realizations from the joint distribution, that there is indeed a
unique stationary distribution for this sampler.

" The notion of using local specification to determine a joint (or global) dis-
tribution in the form (3.8) is referred to as a Markov random field (MRF).
There is by now a substantial literature in this area, with Besag (1974)
being a good place to start. Geman and Geman (1984) provide the next
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critical step in the evolution, while Kaiser and Cressie (2000) offer a current
view and provide further references. '

A critical definition in this regard is that of a cligue. A clique is a set of
cells (equivalently, indices) such that each element is a neighbor of every
other element. With n cells, depending upon the definition of the neighbor
structure, cliques can possibly be of size 1, 2, and so on up to size n.
A potential function (or simply potential) of order k is a function of g
arguments that is exchangeable in these arguments. The arguments of the
potential would be the values taken by variables associated with the cells
for a clique of size k. For continuous Y;, a customary potential when k =
is Y;Y; if i and j are a clique of size 2. (We use the notation 7 ~ j if 7 is
a neighbor of j and j is a neighbor of i.) For, say, binary Y, a potential
when k=2 is C

joint distribution is a pairwise difference form

1 ..
pY1s--->Yn) X EXP{ "5 Z(yi —y)? I~ 35) ¢ - (3.10)
1,

Distributions such as (3.10) will be the focus of the next section. For the
moment, We merely note that it is a Gibbs distribution on potentials of
order 1 and 2 and that

P(yi‘yj,j#i)=N > yifmi, T mi ) (3.11)
J€B;

{vhére m; is the number of neighbors of cell 4. The distribution in (3.11) is
clearly of the form (3.8) and shows that the mean of V; is the average of

I(Y; = Yi’l) =Y;Y; + (1- Y)(1 - YJ) ) its neighbors.

where again i ~ j and I denotes the indicator function. Throughout this
book (and perhaps in most practical work as well), only cliques of order
less than or equal to 2 are considered. ,
i Next, we define a Gibbs distribution as follows: p(y1,-.-,¥Yn) is a Gibbs
» distribution if it is a function of the Y; only through potentials on cliques.
That is,

p(yla---ayn)ocexp{’yz Z ¢(k)(ya1aya2a-'-7yak)} . (39)

k. OXeMy

3.3 Conditionally autoregressive (CAR) models

Although they were introduced by Besag (1974) approximately 30 years
 ago, conditionally autoregressive (CAR) models have enjoyed a dramatic
increase in usage only in the past decade or so. This resurgence arises from
their convenient employment in the context of Gibbs sampling and more
general Markov chain Monte Carlo (MCMC) methods for fitting certain
classes of hierarchical spatial models (seen, e.g., in Section 5.4.3).

Here, ¢(¥) is a potential of order k, M)y is the collection of all subsets of 3.3.1 The Gaussian case

size k from {1,2,...,n}, @ = (a1,---,0)" indexes this set, and vy > 0isa
scale (or “temperature”) parameter.

Informally, the Hammersley-Clifford Theorem (see Besag, 1974; also Clif-
ford, 1990) demonstrates that if we have an MRF, ie., if (3.8) defines a
unique joint distribution, then this joint distribution is a Gibbs distribu=
tion. That is, it is of the form (3.9), with all of its “action” coming in the -
form of potentials on cliques. Cressie (1993, pp. 417-18) offers a proof of
this theorem, and mentions that its importance for spatial modeling lies
in its limiting the complexity of the conditional distributions required, i.e.,
full conditional distributions can be specified locally. :

Geman and Geman (1984) provided essentially the converse of the Ham-
mersley-Clifford theorem. If we begin with (3.9) we have determined an
MRF. As a result, they argued that to sample a Markov random field, one
could sample from its associated Gibbs distribution, hence coining the term
“Gibbs sampler.” .

We begin with the Gaussian (or autonormal) case. Suppose we set

Yi|yji i~ N | D by, 78 | i=1..m. (3.12)
J

These full conditionals are compatible, so through Brook’s Lemma we can
obtain

1,
o) o {~JyDA-Byyf 619

where B = {b;;} and D is diagonal with Dj; = 2. Expression (3.13)
suggests a joint multivariate normal distribution for Y with mean 0 and
variance matrix Ly = (I — B)™'D. .

But we are getting ahead of ourselves. First, we need to ensure that
DY(I — B) is symmetric. The simple resulting conditions are

Tf we only use cliques of order 1, then the ¥; must be independent, as is bij _ bji for all 4,7 - (3.14)
evidenced by (3.9). For continuous data on R!, a common choice for the 72 Tj? ’
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Evidently, from (3.14), B is not symmetric. Returning to our proximity ma:
trix W (which we assume to be symmetric), suppose we set bi; = wi; Jw; "
and 77 = 72 /w;.. Then (3.14) is satisfied and (3.12) yields p(y;|y;, 7 # i) =

N (Zj Wi Yj /Wit , Tg/wi+). Also, (3.13) becomes :

be obtained if we replace the adjacency matrix W by the scaled adjacency
matrix W = Diag(1/w;)W; recall W is not symmetric, but it will be

row stochastic (i-e., all of its rows sum to 1). E}‘,l can then be written as

MY I-—aW) where M is diagonal. Then if |a| < 1, —aW is nonsiggular.
(See the SAR model of the next section, as well as Exerc1se 7.) Carlin al'xd
Banerjee (2003) show that 25,1 is diagonally dominant and symmet.nc.
But diagonally dominant symmetric matrices are positive d'eﬁmte (Ha.r\.rll.le,
1997), providing an alternative argument for the propriety of the joint
distribution.

Returning to the unscaled situation, p can be viewed as an additional
parameter in the CAR specification, enriching this class of spatial models.
Furthermore, p = 0 has an immediate interpretation: the Y; become inde-
pendent IV (0,72 /wiy). If p is not included, independence cannot emerge as
a limit of (3.15). (Incidentally, this suggests a clarification of the role of 7%,
the variance parameter associated with the full conditional distributions:
the magnitude of 72 should not be viewed as in any way 'qua,ntifying the
strength of spatial association. Indeed if all ¥; are multiplied by ¢, 7° be-
comes ¢r> but the strength of spatial association among the Y; is clearly
unaffected.) Lastly, p > ; w;;Yj/wit can be viewed as a reaction function,
i.e., p is the expected proportional “reaction” of Y; to }_; w;; Y /wiy.

1
Py, - --,Yn) o exp {—-2—;3' (Do — W)y} ; (3.15)

where D,, is diagonal with (D.)s; = w;y.

Now a second problem is noticed. (D,, — W)1=0,ie., E;,l is,s'mgular,
so that Xy does not exist and the distribution in (3.15) is improper. (The
reader is encouraged to note the difference between the case of 2}‘,1 singular
and the case of Yy singular. With the former we have a density function
but one that is not integrable; effectively we have too many variables and
we need a constraint on them to restore propriety. With the latter we have
no density function but a proper distribution that resides in a lower dimen-

sional space; effectively we have too few variables.) With a little algebra,
(3.15) can be rewritten as

P(Y1,---,Yn) o< exp —5% Z wij(ys ~y;)* } . (3.16)
i i ' With these advantages plus the fact that p(y) (or the Bayesian posterior
distribution, if the CAR specification is used to model constrained random
effects) is now proper, is there any reason not to introduce the p parameter?

In fact, the answer may be yes. Under 23-,1 = Dy — pW, the full condi-

tional p(y;|y;,J # i) becomes N (p 205 Wij¥i /Wit s 72/w¢+). Hence we are
modeling ¥; not to have mean that is an average of its neighbors, but some
proportion of this average. Does this enable any sensible spatial interpre-
tation for the CAR model? Moreover, does p calibrate very well with any
familiar interpretation of “strength of spatial association?” Fixing 72 =
without loss of generality, we can simulate CAR realizations for a given
n, W, and p. We can also compute for these realizations a descriptive as-
sociation measure such as Moran’s I or Geary’s C. Here we do not present
explicit details of the range of simulations we have conducted. However,
for 2 10 x 10 grid using a first-order neighbor system, when p = 0.8, I is
typically 0.1 to 0.15; when p = 0.9, [ is typically 0.2 to 0.25; and even when
p=0.99, I is typically at most 0.5. It thus appears that p can mislead with
regard to strength of association. Expressed in a different way, within a
Bayesian framework, a prior on p that encourages a consequential amount
of spatial association would place most of its mass near 1.

This is a pairwise difference specification slightly more general than (3.10).
But the impropriety of p(y) is also evident from (3.16) since we can add any
constant to all of the ¥; and (3.16) is unaffected; the Y; are not “centered.”
A constraint such as ), ¥; = 0 would provide the needed centering. Thus
we have a more general illustration of a joint distribution that is improper,
but has all full conditionals proper. The specification (3.16) is often referred
to as an intrinsically autoregressive (IAR) model.

As aresult, p(y) in (3.15) cannot be used as a model for data; data could
not arise under an improper stochastic mechanism, and we cannot impose
a constant center on randomly realized measurements. Hence, the use of
an improper autonormal model must be relegated to a prior distributional
specification. That is, it will be attached to random spatial effects intro-
duced at the second stage of a hierarchical specification (again, see e.g.
Section 5.4.3).

The impropriety in (3.15) can be remedied in an obvious way. Rede-
fine 23_,1 = Dy — pW and choose p to make 23‘,1 nonsingular. This is
guaranteed if p € (1/)\(1), 1//\(n)), where Ay < A) < -0 < A(p are
the ordered eigenvalues of D;l/ 2WD;l/ 2; see Exercise 5. Moreover, since
tr(D5*WD,) = 0= T As), Ay < 0, Amy > 0, and 0 belongs to
(1/ 2, 1/ A m))-

Simpler bounds than those given above for the propriety parameter p may

A related point is that if p(y) is proper, the breadth of spatial pattern
may be too limited. In the case where a CAR model is applied to random
effects, an improper choice may actually enable wider scope for posterior
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spatial pattern. As a result, we do not take a position with regard to propri-
ety or impropriety in employing CAR specifications (though in the remain-
der of this text we do sometimes atterpt to illuminate relative advantages
and disadvantages).

Referring to (3.12), we may write the entire system of random variables

specify the distribution of Yy given Yi,..., Y, to be a normal distribution,
quch as a N (p ¥ WojYi Jwot > T /wo+). Note. tl?a.t th1's d(.aterx.nme.s the
+ oot distribution of Yo, Yi,. . -, Yn. However, this joint distribution is not
Jt(l)1é CAR, distribution that would arise by specifying the full conditionals

..., Y, and using Brook’s Lemma, as in constructing (3.15).
as fOr ‘Y07Y17 n

Y = BY-+e, orequivalently, (3.17)
(I-B)Y = e. (318)

In particular, the distribution for Y induces a distribution for e. If p(y) is '
proper then Y ~ N(0, (I — B)~*D) whence € ~ N(0,D(I — B)'), i.e., the
components of € are not independent. Also, Cov(e,Y)=D. ~
When p(y) is proper we can appeal to standard multivariate normal dis-
tribution theory to interpret the entries in 2‘3‘,1. For example, 1/ (Eg,l)ii =
Var(%|Y;,j # i). Of course with By' = D~ — B), (83" )u = 1/}
providing immediate agreement with (3.12). But also, if (23',1)1-3- = 0, then
Y; and Y; are conditionally independent given Y,k # ,7, a fact you are .
asked to show in Exercise 8. Hence if any b;; = 0, we have conditional in-
depgndence for that pair of variables. Connecting b;; to w;; shows that the
choice of neighbor structure implies an associated collection of conditional
independences. With first-order neighbor structure, all we are asserting is
a spatial illustration of the local Markov property (Whittaker, 1990, p. 68).
We conclude this subsection with three remarks. First, one can directly
introduce a regression component into (3.12), e.g., a term of the form xi0
Conditional on 3, this does not affect the association structure that ensues
from (3.12); it only revises the mean structure. However, we omit details
here (the interested reader can consult Besag, 1974), since we will only use
the autonormal CAR as a distribution for spatial random effects. These
effects are added onto the regression structure for the mean on some trans-
formed scale (again, see Section 5.4.3). ‘
We also note that in suitable contexts it may be appropriate to think
of Y; as a vector of dependent areal unit measurements or, in the context
of random effects, as a vector of dependent random effects associated with
an areal unit. This leads to the specification of multivariate conditionally

9.8.2 The non-Gaussian case

If one seeks to model the data directly using a CAR specification then
in many cases 2 normal distribution would not be appropriate. Binary
response data and sparse count data are two examples. In fact, one can

gelect any exponential family model as a first-stage distribution for the
data and propose

p(wilys,d # 1) o< exp ({9 (B — x (6:)} (3.19)

Qhere, adopting a canonical link, 0; =Y ;4 bijy; and 1P is a pon~negative
dispersion parameter. In fact (3.19) simplifies to

p(yily;,j #1) cexp | ¥ Ewijyiyj . (3.20)
J#i

Since the data are being modeled directly, it may be appropriate to intrf;—

duce a nonautoregressive linear regression component to (3.20). That is,

we can write 0; = xIB+3 23 Di¥i> for some set of covariates x;. After

obvious reparametrization (3.20) becomes

pilyjrd #1) <cexp | XTv+ 9D biys | - (3.21)
J#i

Tn the case where the Y; are binary, a particular version, which has

received recent attention in the literature, is the autologistic model; see,

e.g., Heikkinen and Hogmander (1994), Hogmander and Mgller (1995), and

Hoeting et al. (2000). Here,

PYi=1)

— <1 v
autoregressive (MCAR) models, which is the subject of Section 7.4. From log 5o —m =% 7+ (] E Wi (3.22)
. - . - P(Y;=0)
a somewhat different perspective, Y; might arise as (Yi1,...,Yir)' where T ‘ - ’ e font
Y, is the measurement associated with areal unit ¢ at time ¢, ¢ =1,... , I where w;; = 1if i~ j, =0 otherwise. Using Brook’s Lemma the join

Now we would of course think in terms of spatiotemporal modeling for Yi¢. distribution of Y3, ..., Y, can be shown to be
This is the subject of Section 8.5. o
Lastly, a (proper) CAR model can in principle be used for point-level
data, taking w;; to be, say, an inverse distance between points ¢ and j.
However, unlike the spatial prediction described in Section 2.4, now spatial

prediction becomes ad hoc. That is, to predict at a new site Yp, we might

P 1,y n) < exp | ¥ (Z ym) + > wigyys | - (3.23)
: i |

Expression (3.23) shows that f is indeed a Gibbs distribution and appears
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QMU

1 1
ifp€ ('X(H’ X(m)
of W. = . .
~ Alternatively, W can be replaced by W where now, for each i, the ith row

has been normalized to sum to 1. That is, (W) , = w;; /wi+. Again, W is

to be an attractive form. But for likelihood or Bayesian inference, the nor-
malizing constant is required, since it is a function of v and ¥. However
computation of this constant requires summation over all of the 2™ poss ’
ble values that (Y3,Y3, ..., Ys) can take on. Even for moderate sample sizeg
this will present computational challenges. Hoeting et al. (2000) propose
approximations to the likelihood using a pseudo-likelihood and a normal
approximation.

The case where Y; can take on one of several categorical values presents g
natural extension to the autologistic model. If we label the (say) L possible
outcomes as simply 1,2, ..., L, then we can define

) where now Ay < -+ < A(n) are the ordered eigenvalues

not symmetric, but it is row stochastic, i.e., W1 = 1. If we set B = aW’
o is called 2 spatial autocorrelation parameter and, were W a cont}gulty
matrix, now ¥; =& Y Yil(i € 8;) [wiy + €. Wi}:h a very regular grid the
wiy Will all be essentially the same 2 and thus a will be a multiple of p. B%
perhaps more importantly, with W row stochastic the eigenvalues 9f w
are all less than or equal to 1 (ie., max |A;| = 1). Thus I — oW will be
nonsingular if & € (—1,1), justifying referring to & as an autocorrelation
sarameter; see Exercise 7.

A SAR model is customarily introduced in a regression context, i.e., the
residuals U =Y — X3 are assumed to follow a SAR model, rather than Y
itself. But then, following (3.17), if U = BU + ¢, we obtain the attractive

PYi=1|Yj#) e |9 wyl(G=01], (329

J#i

with w;; as above. The distribution in (3.24) is referred to as a Potts model.
It obviously extends the binary case and encourages Y; to be like its neigh=
bors. It also suffers from the normalization problem. It can also be employed

as a random effects specification, as an alternative to an autonormal; see
Green and Richardson (2002) in this regard.

form

Y=BY+({I-B)XB+e. ' (3.26)
Expression (3.26) shows that Y is modeled through a component that
provides a spatial weighting of neighbors and a component that is a usual
linear regression. If B is the zero matrix we obtain an OLS regression; if
B = I we obtain a purely spatial model. i

We note that from (3.26) the SAR model does not introduce any spatial
effects; the errors in (3.26) are independent. Expressed in a different way,
if wemodeled Y = XBasU+e with e independent errors, we would have
U+e=BU+e+eande+te would result in a redundancy. As a result,
in practice a SAR specification is not used in conjunction with a GLM.
To introduce U as a vector of spatial adjustments to the mean vector, a
transformed scale creates redundancy between the independent Gaussian
error in the definition of the U; and the stochastic mechanism associated
with the conditionally independent Y;.

We briefly note the somewhat related spatial modeling approach of Lang-
ford et al. (1999). Rather than modeling the residual vector U = BU + ¢,
they propose that U = Be where € ~ N (0,0°I), i.e., that U be modeled
as a spatially motivated linear combination of independent variables. This
induces Yy = o2BBT. Thus, the U; and hence the Y; will be dependent
and given B, cov (V;,Yy) = 023 ; bighuj- If B arises through some prox-
imity matrix W, the more similar rows % and i/ of W are, the stronger the
association between Y; and Yy . However, the differerice in nature between
this specification and that in (3.26) is evident. To align the two, we would
set (I — B)™* = B, i.e. B=I— B! (assuming B is of full rank). I — B~*
would not appear to have any interpretation through a proximity matrix.
Perhaps the most important point to note with respect to SAR models is

3.4%» Simultaneous autoregressive (SAR) models

Returning to (3.17), suppose that instead of letting Y induce a distribution
for €, we let € induce a distribution for Y. Imitating usual autoregressive:
time series modeling, suppose we take the ¢; to be independent innovations.

For a little added generality, assume that € ~ N (O, ﬁ) where D is diagonal

with (f)) = o?. (Note D has no connection with D in Section 3.3; the

B we use below may or may not be the same as the one we used in that
section.) Analogous to (3.12), now Y; = 35, b;; ¥ + €, i = 1,2,...,n, with
€; ~ N (0,02). Therefore, if (I — B) is full rank, '

Y ~N (0 ,(I-B)'D (- B)‘l)’) . (3.25)

Also, Cov(e,Y) = D(I - B)™ 1. If D = ¢2I then (3.25) simplifies to Y ~
N (0, o [(T = B)I — BY]™")- In order that (3.25) be proper, [ — B must
be full rank. Two choices are most frequently discussed in the literature
(e.g., Griffith, 1988). The first assumes B = pW, where W is a so-called
contiguity matrix, i.e., W has entries that are 1 or 0 according to whether
or not unit i and unit j are direct neighbors (with wy; = 0). So W is our
familiar first-order neighbor proximity matrix. Here p is called a spatial
autoregression parameter and, evidently, ¥; = oy j Y;I(j € 8;) + €;, where
9; denotes the set of neighbors of ¢. In fact, any proximity matrix can be
used and, paralleling the discussion below (3.15), I—pW will be nonsingular
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that they are well suited to maximum likelihood estimation but not at ajj
for MCMC fitting of Bayesian models. That is, the log likelihood associateq

with (3.26) (assuming D = 0°I) is

L log|o™ (1 = B~ 55 (Y = XB) I~ B) (U~ BY (Y - XB). (3.2

Though B will introduce a regression or autocorrelation parameter, the
quadratic form in (3.27) is quick to calculate (requiring no inverse) and the
determinant can usually be calculated rapidly using diagonally dominant,
sparse matrix approximations (see, e.g., Pace and Barry, 1997a,b). Thy
maximization of (3.27) can be done iteratively but, in general, efficient}

Also, note that while the form in (3.27) can certainly be extended to
full Bayesian model through appropriate prior specifications, the absence
of a hierarchical form with random effects implies straightforward Bayesia;
model fitting as well. Indeed, the general spatial slice Gibbs sampler (se
Appendix Section A.6, or Agarwal and Gelfand, 2002) can easily handl
this model. However, suppose we attempt to introduce SAR random ef-
fects in some fashion. Unlike CAR. random effects that are defined through'f
full conditional distributions, the full conditional distributions for the SAR
effects have no convenient form. For large n, computation of such distrib
tiong, using a form such as (3.25) will be expensive. ’

SAR models as in (3.26) are frequently employed in the spatial econo-
metrics literature. With point-referenced data, B is taken to be pWW where
W is the matrix of interpoint distances. Likelihood-based inference can be
implemented in S+SpatialStats as well as more specialized software, such.
as that from the Spatial Analysis Laboratory (sal.agecon.uiuc.edu)).
Software for large data sets is supplied there, as well as through the web-
site of Prof. Kelley Pace, www.spatial-statistics.com. An illustrative 5
example is provided in Exercise 10. V

Figure 3.4 Tllustration of spatiotemporal areal unit setting for STAR model.

a5 a function of p in the CAR model than they do for the SAR model. (As
an aside, she notes that these correlations are not even monotone for p <
0, another reason to avoid negative spatial correlation parameters.) Also,
correlations among pairs can switch in nonintuitive ways. For example,
when working with the adjacency relationships generated by the lower 48
contiguous U.S. states, she finds that when p = .49 in the CAR model,
Corr(Alabama, Florida) = .20 and Corr(Alabama, Georgia) = .16. But
when p increases to .975, we instead get Corr(Alabama, Florida) = .65
and Corr(Alabama, Georgia) = .67, a slight reversal in ordering.

CAR versus SAR models

Cressie (1993, pp. 408-10) credits Brook (1964) with being the first to make
a distinction between the CAR and SAR models, and offers a comparison.
of the two. To begin with, we may note from (3.13) and (3.25) that the two
forms are equivalent if and only if '

(I-B)™'D=(-B)"'D(I-B)"),

where we use the tilde to indicate matrices in the SAR model. Cressie then
shows that any SAR model can be represented as a CAR model (since
D is diagonal), but gives a counterexample to prove that the converseis
not true. For the “proper” CAR and SAR models that include spatial
correlation parameters p, Wall (2004) shows that the correlations between
neighboring regions implied by these two models can be rather different;
in particular, the first-order neighbor correlations increase at a slower rate

STAR models

In the literature SAR models have frequently been extended to handle
spatiotemporal data. The idea is that in working with proximity matrices,
we can define neighbors in time as well as in space. Figure 3.4 shows a
_ simple illustration with 9 areal units, 3 temporal units for each areal unit
yielding i = 1,...,9, t = 1,2,3, labeled as indicated.

~ The measurements Y;; are spatially associated at each fixed ¢. But also,
_ we might seek to associate, say, Yi2 with Yi and Y;s. Suppose we write ¥



88 BASICS OF AREAL DATA MODELg , COMPUTER TUTORIALS 89

as the 27 x 1 vector with the first nine entries at ¢ = 1, the second nine at?
t =2, and the last nine at ¢ = 3. Also let Ws = BlockDiag(W1, W1, W)
where N :

ﬁlatﬁx, and p measures the strength of spatial association. As such, of
fundamental importance is the structure of W, which is often taken as an
adjacency (or contiguity) matrix. It is therefore important to begin with the

010100000 ecification of such matrices in S+SpatialStats. Our discussion follows
1 01 010O0O00 iﬁa’c outlined in Kaluzny et al. (1998, Ch.5), and we refer the reader to
¢ 10001000 that text for further details. o
100010100 " One way of specifying neighborhood structures is through lists in an
Wy = 8 (1) 2 é (1) é 8 (1) (1) ordinary text (ASCII) file. For example, .
g 1 2 4
0 0010O0CCO0CT1TO 2 1 3 5 6
0 00010101 3 5 4 5
0 000O0T1O0T1TO0 4 1 3 6
Then Wy %rovi%?s a Spatia.l contiguity matrix for the Y’s. Similarly, let 5 2 3 7
2 6 2 4
W = W, 0 W, |, where Wy = I3x3. Then Wr provides a tem: 7 5
0 W, O

is a typical text listing of adjacencies. Here we have 7 sites, where site 1 has
gites 2 and 4 as neighbors, site 2 has sites 1, 3, 5, and 6 as neighbogs, and so
on. The function read.neighbor in S+SpatialStats reads such a text file

poral contiguity matrix for the Y’s. But then, in our SAR model we can
define B = p;Ws + p;Wr. In fact, we can also introduce pstWsWy into

:B and note that 0 W, o0 and converts it to a spatial .neighbor object, the fundamental adjacency-
‘; , WsWer=| Wi 0 Wi storage object in the language. Thus, if we write the above matrix to a file
- 0 wW; 0 called Neighbors.txt, we may create a spatial.neighbor object (say,

ngb) as ;

>ngb <~ read.neighbor (‘¢ ‘Neighbors.txt’’, keep=F)

By default, the spatial.neighbor object ngb is larger than required,
since the symmetry of the neighbors is not accounted for. To correct this,
the size can be reduced using the spatial.condense function:

In this way, we introduce association across both space and time. For in-
stance Vs and Yy affect the mean of Y15 (as well as affecting Y1;) from
Ws by itself. Many more possibilities exist. Models formulated through -
such more general definitions of B are referred to as spatiotemporal autore
gressive (STAR) models. See Pace et al. (2000) for a full discussion and
development. The interpretation of the p’s in the above example measures
the relative importance of first-order spatial neighbors, first order temporal
neighbors, and first-order spatiotemporal neighbors. \

>ngb <- spatial.condense(ngb, symmetry=T)

Another, perhaps more direct method of creating neighbor objects is by
invoking the spatial.neighbor function directly on an n X n contiguity
matrix. Note that the neighbor relations listed above are equivalent to the

3.5 Computer tutorials (symmetric, 0-1) contiguity matrix

In this section we outline the use of the S+SpatialStats package in coh g é (1) é (1) 2 g
structing spatial neighborhood (adjacency) matrices, fitting CAR and SAR 0101100
models using traditional maximum likelihood techniques, and mapping the

i ~ 101 0 0 10
results for certain classes of problems. Here we confine ourselves to the 011000 1
modeling of Gaussian data on areal units. As in Section 2.5, we adopt a 0101000
tutorial style. : 0000100

Suppose these relations are stored in a file called Adjacency.txt. A
spatial.neighbor object may be created from this contiguity matrix as
follows:

3.5.1 Adjacency matriz construction in S+SpatialStats

The most common specification for a SAR model is obtained by setting

B = pW and D = Diag (0}), where W is some sort of spatial dependence >no.sites <~ 7
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’~>sids.raceslm.SAR <~ slm(sid.ft“nwbirths.fF,
 cov.family=SAR, data=sids, spatial.arglist
=list (neighbor=sids .neighbor, region. id=1:100,
| yeights=1/sids$births))

>race.SAR. summary <- summary(sids.raceslm.SAR)

>ngb.mat <- matrix(scan(‘‘Adjacency.txt’’),
ncol=no.sites,byrow=T)
>ngh2 <- spatial.neighbor(neighbor.matrix=ngb.mat,
nregion=no.sites, symmetric=T)
Note that the “symmetry” above refers to the spatial dependence ma;
W, and may not always be appropriate. For example, recall that a commoep
specification is to take W as the row-normalized adjacency matrix. In such
cases, each element is scaled by the sum of the corresponding row, and the
resulting W matrix is not symmetric. To form a row-normalized spatia]
dependence matrix W, we modify the above example to '
>ngb2 <- spatial.neighbor(neighbor.matrix=ngb.mat,
nregion=no.sites, weights=1/c(2,4,3,3,3,2,1))

Here, the weights are the number of neighbors (i.e., the number of ele;,
ments in each row of Neighbors.txt). '

The output contained in race.SAR.summary is as follows:

Call: _
g?;(formula = gid.ft ~ nwbirths.ft, cov.family = SAR,

data = sids, spatial.arglist = list(neighbor = sids.neighbor,
fégion.id = 1:100, weights = 1/sids\$births))}

Residuals:
S Min 1Q Median 30 Max
406.9 -18.28  4.692 25.53 79.09

3.5.2 SAR and CAR model fitting in S+SpatialStats coetficients:

Value Std. Error t value Pr>ltl)
(Intercept) 1. 6729 0.2480 6.7451  0.0000
awbirths.ft 0.0337 0.0069 4.8998 0.0000

We next turn to fitting Gaussian linear spatial models using the s1m (spa:
tial linear model) function in S+SpatialStats. A convenient illustration
s offered by the SIDS (sudden infant death syndrome) data, analyzed by
Cressie (1993, Sec. 6.2) and Kaluzny et al. (1998, Sec. 5.3), and already
loaded into the S+SpatialStats package. This data frame contains counts
of SIDS deaths from 1974 to 1978 along with related covariate informa-
tion for the 100 counties in the U.S. state of North Carolina. We fit two
spatial autoregressive models with the dependent variable as sid.ft (a
Freedman-Tukey transformation of the ratio of the number of SIDS cases
to the total number of births in each county). Further information abou
the data frame can be obtained by typing
>help(sids)

We first fit a null model (no covariates). Note that sids.neighbor (buil
into S+SpatialStats) is a spatial.neighbor object containing the con
guity structure for the 100 North Carolina counties. Specifically, region.id
is the variable that identifies the way the regions are numbered, while
weights specifies the elements of the W matrix. We follow Cressie (1993)
and assign the reciprocal of the births in the county as the weights. The
resulting model fit (without covariates) is obtained by typing

>sids.nullsim.SAR <~ slm(sid.ft~1, cov.family=SAR,

data=sids, spatial.arglist=list(neighbor=sids.neighbor,
region.id=1:100, weights=1/sids$births))
>null.SAR.summary <- summary(sids.nullslm.SAR)

_ Residual standard error: 34.4053 on 96 degrees of‘freedom

Varia_nce-Covariance Matrix of Coefficients
(Intercept) nwbirths.ft
_ (Tntercept) 0.061513912 -1.633112e-03
nwbirths.ft -0.001633112  4.728317e-05

Correlation of Coefficient Estimates
(Intercept) nwbirths.ft
(Intercept ) 1.000000 -0.957582
‘nwbirths.ft —0.957582 1.000000

Note that a county’s non-white birth rate does appear to be significantly
associated with its SIDS rate, but this covariate is strongly negatively as-
sociated with the intercept. We also remark that the sim function can also
fit a CAR (instead of SAR) model simply by specifying cov.family=CAR
above.

Next, instead of defining a neighborhood structure completely in terms of
spatial adjacency on the map, we may want to construct neighbors using
a distance function. For example, given centroids of the various regions,
we could identify regions as neighbors if and only if their intercentroidal
distance is below a particular threshold.

We illustrate using www.biostat.umn.edu/“brad/data/Columbus .dat,

To fit a Gaussian spatial regression model with a regressor (say, the
ratio of non-white to total births in each county between 1974 and 1978), -
we simply modify the above to '
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a gata set offering neighborhood-level information on crime, mean home
value, mean income, and other variables for 49 neighborhoods in Columbuys
OH, during 1980. More information on these data is available from Anselhi
(1988, p.189), or in Exercise 10.

We begin by creating the data frame:

>columbus <- read.table(‘‘Columbus.dat’’, header=T)

versatile as ArcView or other GIS pac_k‘ages, it does offer a rare combination
of GIS and statistical analysis capabilities. . .

‘We will now map the actual transformed SIPS rates alc.mg with their
fitted values under the SAR model of the previous subsection. Before we
can do this, however, a special feature of the polygon boundary ﬁle‘ of the
s—plusNorth Carolina county map must be accounted for. Specifically,
county #27, Currituck county, is apparently comprised of not one but three
separate regions. Thus, when mapping the raw SIDS' rates, Kaluzny et
al. (1998) propose the following solution: form a modified vectqr for the
ping variable (sid.ft), but with Currituck county appearing three

Suppose we would like to have regions with intercentroidal distances less
than 2.5 units as neighbors. We first form an object, columbus.coords
that contain the centroids of thé different regions. The function that we
use is find.neighbor, but a required intermediate step is making a quad map
tree, which is a matrix providing the most efficient ordering for the ne times:

est neighbor search. This is accomplished using the quad.tree function >sids.map <~ c(sids$sid.ft[1:26] ,rep(sids$sid.ft[27],3),
in S+SpatialStats. The following steps will create a spatial.neighbor sids$sid.ft[28:100]1)

object in this way: We next form a vector of the cutpoints that determine the different bins
>columbus.coords <- cbind(columbus$X, columbus$Y) into which the rates will be classified, and assign the county rates to these
>columbus.quad <- quad.tree(columbus. coords)
>columbus.ngb <- find.neighbor (x=columbus.coords,
quadtree=columbus. quad, max.dist=2. 5) :
>columbus.ngb <- spatial.neighbor(row.id=columbus ngb[,11,

-% col.id=columbus.ngb[,2])

bins:

>cutoff.sids <- c(0.0,2.0,3.0,3.5,7.0)

" >sids.mapgrp <~ cut (sids.map, breaks.sids)
’ We now must assign a color (or shade of gray) to each bin. An oddity in the
default postscript color specification of S-plus is that color “1” is black,
and then increasingly lighter shades are given by colors 3, 2, and 4 (not 2, 3,
and 4, as you might expect). While this problem may be overcome by careful
- work with the ps.options command, here we simply use the nonintuitive
4.9-3-1 lightest to darkest grayscale ordering, which is obtained here simply

by swapping categories 1 and 4:

Once our neighborhood structure is created, we proceed to fit a CAR
model (having crime rate as the response and house value and income as
covariates) as follows:

>columbus.CAR <- s1m(CRIME ~ HOVAL + INC, cov.family=CAR,
data=columbus, spatial.arglist=list(neighbor=
columbus.ngb, region.id=1:49))

>columbus.CAR. summary <- summary(columbus.CAR) >sids.mapgrpl(sids.mapgr ==1)] <= 0

>sids.mapgrpl(sids.mapgrp==4)1 <- 1

The output from columbus.CAR.summary, similar to that given above Ssids.mapgrpl(sids.map ==0)] <~ 4

for the SAR model, reveals both covariates to be significant (both p-values

near .002). Now the map of the actual (transformed) SIDS rates can be obtained as

>map("county", "north carolina", £i11=T, color=sids.mapgrp)
>map("county”, "north carolina", add=T)

>title(main="Actual Transformed SIDS Rates")

" >legend(locator(l), legend=
c("<2.0","2,0-3.0","3.0-3.5",">3 .5"), fill=c(4,2,3,1))

In the first command, the modified mapping vector sids.mapgrp is spec-
ified as the grouping variable for the different colors. The £i11=T option
automates the shading of regions, while the next command (with add=T)
adds the county boundaries. Finally, the locator(1) option within the
legend command waits for the user to click on the position where the leg-
end is desired; Figure 3.5(a) contains the result we obtained. We hasten
to add that one can automate the placing of the legend by replacing the

3.5.8 Choropleth mapping using the maps library in S-plus

Finally, we describe the drawing of choropleth maps in S+SpatialStats.
In fact, S-plus is all we need here, thanks to the maps library originall
described by Becker and Wilks (1993). This map library, invoked using th
command,

>library(maps)
contains the geographic boundary files for several maps, including county
boundaries for every state in the U.S. However, other important regional

boundary types (say, zip codes) and features (rivers, major roads, and
railroads) are generally not available. As such, while S-plus is not nearly as
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mapgrpl(sids.race. fit.mapgrp==1)] <~ 0
mapgrpl(sids.race.fit .mapgrp==4)1 <- 1
mapgrpl(sids.race.fit.mapgr ==0)] <~ 4
nporth carolina', £i11=T,

,i>s:i.ds.race.fit.
: ~>sids.race.fit.
Ssids .race.fit.
, 'ma ("cou_nty" , :
1 Ic:olo:r:=sids .race.fit .mapgrp)
ap("county", wnorth carolina", add=T)
;?clizle(mainf'l:‘itted SIDS Rates from SAR Model")
1ocator(1), legend=

>1e§(zﬁ(<1§ o".v2.0-3.0","3.0-3.5",">3.5"), £i11=c(4,2,3,1))
 mioure 3.5(b) contains the result. Note that the SAR model has resulted

jFlgsl;;niﬁ-can’c smoothing of the observed rates, and clarified the generally
in :
increasing pat .
Finally, if a map of predicted (rat
~ yalues can be formed as
k 1/sqrt(sids$births) sresid(sids.raceslm.SAR)
t - sids.race.fit - noise

a) actual transformed SIDS rates

tern as we move from west t0 east. .
her than fitted) values is desired, these

Snoise <~
Ssignal <- sids$sid.f : :
s.race.pred <~ signal + sids.race.fit
>sids.race.pred.map <- c(sids.race.pred[1:26] s
rep(sids .race.pred[27],3), sids .race.pred[28:100])
>gsids.race.pred.mapgrp <- cut(sids.race.pred.map,

cutoff.sids)

_ The actual drawing of the maps then proceeds exactly as before.

>sid

:3;6 Exercises

1. Verify Brook’s Lemma, equation (3.7).

2(a) To appreciate how Brook’s Lemma WOI‘k.S, s.upp_ose }_fl and Y, are both
- binary variables, and that their joint distribution is defined through
- conditional logit models. That is,

Yi = 1% P(Ya=1%) _
Ong}Z%Yi - 0‘1Y2§ =op+ai1Ys and log——————-———-——P(Y2 —oy) Bo+ Y1 -
Obtain the joint distribution of Y7 and Ya.

(b) This result can be straightforwardly extended to the case of more than
two variables, but the details become increasingly clumsy. Illustrate
_ this issue in the case of three binary variables, Y1, Y2, and Y3.

3. Returning to (3.13) and (3.14), let B = ((bi;)) be an n x n matrix with
positive elements; that is, bi; > 0, 25; b5 <1 for all 4, and 3, by <1
 for at least one i. Let D = Diag (7) be a diagonal matrix with positi\{’e
_elements 72 such that D! (I — B) is symmetric; that is, b; [T2 =b5i /75,
_for all4,j. Show that D" (I — B) is positive definite.

Looking again at (3.13), obtain a simple sufficient condition on B such

Figure 3.5 Unsmoothed raw (a) and spatially smoothed fitted (b) rates, Nort};
Carolina SIDS data.

locator (1) option with actual (z,y) coordinates for the upper left corner
of the legend box. _ ‘
To draw a corresponding map of the fitted values from our SAR model
(using our parameter estimates in the mean structure), we must first create
a modified vector of the fits (again due to the presence of Currituck county):
>sids.race.fit <~ fitted(sids.raceslm.SAR)
>sids.race.fit.map <- c(sids.race.fit[1:26],
rep(sids.race.fit[27]1,3), sids.race.fit[28:100]1)
>sids.race.fit.mapgrp <~ cut(sids.race.fit.map,

- cutoff.sids) o
where cutoff.sids is the same color cutoff vector as earlier. The map is
then drawn as follows:

>sids.race.fit.mapgrp <~ cut(sids.race.fit.map,

breaks.sids)

!

14
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that the CAR prior with precision matrix D™ (I — B) is a pairwigs
difference prior, as in (3.16).
5. Show that 23‘,1 = Dy, — pW is nonsingular (thus resolving the improppj. °
ety in (3.15)) ifpe (1/)‘(1)91/)\(11))7 where A(l) < )\(2) < - L }‘(n) are
the ordered eigenvalues of D{,}l/ QWDZ,,l/ 2, '
6. Show that if all entries in W are nonnegative and D,,—pW is nonsingular
with p > 0, then all entries in (D, — pW)™" are nonnegative.
7. Recalling the SAR formulation using the scaled adjacency matrix W just
below (3.25), prove that I — oW will be nonsingular if o € (-1,1), so
that o may be sensibly referred to as an “autocorrelation parameter.”
8. In the setting of Subsection 3.3.1, if (Eg,l)ij = 0, then show that Y; and
Y; are conditionally independent given Yy, k #1,7.
9. The file www.biostat.umn.edu/ brad/data/state-sat.dat gives the
1999 state average SAT data (part of which is mapped in Figure 3.1),
while www.biostat.umn.edu/ brad/data/contig-lower48.dat gives

the contiguity (adjacency) matrix for the lower 48 U.S. states (i.e., ex-
cluding Alaska and Hawaii, as well as the District of Columbia).

(a)

v Use the S+SpatialStats software to construct a spatial.neighbor
g
object from the contiguity file.

(b) Use the slm function to fit the SAR model of Section 3.4, taking the
verbal SAT score as the response Y and the percent of eligible students
taking the exam in each state as the covariate X . Use row-normalized
weights based on the contiguity information in spatial.neighbor
object. Is knowing X helpful in explaining Y7 :
Using the maps library in S-plus, draw choropleth maps similar to
Figure 3.1 of both the fitted verbal SAT scores and the spatial residu-
als from this fit. Is there evidence of spatial correlation in the response
Y once the covariate X is accounted for?

(c)

Repeat your SAR model analysis above, again using slm but now
assuming the CAR model of Section 3.3. Compare your estimates
with those from the SAR model and interpret any changes.

One might imagine that the percentage of eligible students taking the
exam should perhaps affect the variance of our model, not just the
mean structure. To check this, refit the SAR model replacing your
row-normalized weights with weights equal to the reciprocal of the
percentage of students taking the SAT. Is this model sensible?

10. Consider the data www.biostat.umn.edu/ brad/data/Columbus.dat,
taken from Anselin (1988, p. 189). These data record crime information
for 49 neighborhoods in Columbus, OH, during 1980. Variables mea-
sured include NEIG, the neighborhood id value (1-49); HOVAL, its mean

sin ]
lé}c?{l;[l\/IE, its number of residential burglaries and vehicle thefts per thou-

gand households; - : :
PLUMB, the percentage of housing units without plumblgg; DISCBD,
the neighborhood centroid’s distance from the cen.tral b}lsmess Pdlﬁsffm.ct;
X, an z-coordinate for the neighborhood centroid (in arbitrary d1g11uzmg
uI,litS, not polygon coordinates); Y, the same as X for the y-coordinate;
AREA, the neighborhood’s area; and PERIM, the perimeter of the poly-

gon describing the neighborhood.

97

EXERCISES

g value (in $1,000); INC, its mean household income (in $1,000);

OPEN, a measure of the neighborhood’s open space;

Use S+SpatialStats to construct spatial.neighbor objects for the
neighborhoods of Columbus based upon centroid distances less than

i. 3.0 units,

ji. 7.0 units,
iii. 15 units.
(b) For each of the four spatial neighborhoods constructed above, use
the slm function to fit

SAR models with CRIME as the dependent
variable, and HOVAL, INC, OPEN, PLUMB, and DISCBD as the
covariates. Compare your results and interpret your parameter esti-
mates in each case.

(c) Repeat your analysis using Euclidean distances in the B matrix itself.

That is, in equation (3.26), set B = pW with the W;; the Euclidean
distance between location i and location j.

(d) Repeat part (b) for CAR models. Compare your estimates with those

from the SAR model and interpret them.



