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Ockham's Razor, an established principle used every day in science, has deep connections

with Bayesian reasoning, which traces directly back to Sir Harold Je�reys' pioneering work

on statistics during the 1920s and 30s. In this paper we shall explore the connection between

Ockham's Razor and Bayesian statistics, and present an objective quanti�cation of Ockham's

Razor.

\Pluralitas non est ponenda sine necessitate."

|William of Ockham

Introduction.

Ockham's razor, that is, the principle that an explanation of the facts should be no

more complicated than necessary, is an accepted principle in science. Over the years it has

proven to be an e�ective tool for weeding out unpro�table hypotheses, and scientists use

it every day, even when they do not cite it explicitly. See Thorburn (1918) for a history of

the principle.

Ockham's razor is usually thought of as an heuristic, that experience has shown to be

an e�ective tool. It is less widely known that under some circumstances, it can also be

regarded as a consequence of deeper principles. This fact is implicit in Harold Je�reys'

book on probability (1939), and has more recently been emphasized by Good (1968, 1977),

Jaynes (1979), Smith and Spiegelhalter (1980), Gull (1988), Loredo (1989), and MacKay

(1991).

je�reys (1939) considered the problem of �tting observed data to an empirical function.

For a falling body, he considers the law

s = a+ ut+

1

2

gt

2

; (1)

where a, u and g are adjustable parameters. So far this is only a standard problem in

estimation theory. However, there are in�nitely many possible laws that can represent the

data set. For example, Je�reys considers alternative laws of the form

s = a+ ut+

1

2

gt

2

+ a

3
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3

+ :::+ a

n

t

n

; (2)

where n is greater than the number of observations and all coe�cients are adjustable.

Given such a law, there are in�nitely many choices of the parameters that will exactly
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�t the data, and the question is, why do we prefer (1) over (2)? The easy answer, given

by Ockham's razor, is that we ought to prefer (1) to (2), provided that (1) adequately

represents the observed data, on the grounds that (2) is unnecessarily complicated. On

the other hand, (2) can actually represent the observed data points better than (1), since

for large enough n it can be arranged to pass exactly through each data point (Figure 1).

So there must be something other than the ability to �t the data that leads us to prefer

the simpler law to the more complex.

Prior probabilities.

Je�reys (1939; p. 47) suggested that the reason that we favor the simpler law is that it

has higher prior probability than the more complex law (see Box 1: Bayes' Theorem for an

explanation of the terminology). This is certainly a reasonable idea. Scientists know from

experience that Ockham's razor works, and for them to reect this experience in choosing

their prior probabilities so that they favor the simpler hypothesis would be in accord with

that experience. In fact, even though scientists do not usually think in terms of prior

probabilities when considering a hypothesis, when they consider simple hypotheses before

complex ones, they in e�ect are doing just this. This approach is also consistent with the

tentative and step-by-step nature of science, whereby a hypothesis is taken as a working

hypothesis, and altered and re�ned as new data become available.

Wrinch and Je�reys proposed codifying this as a rule that would automatically give

higher prior probability to laws that have fewer parameters (Wrinch and Je�reys 1921;

Je�reys 1939). This approach would lead us to try simpler laws �rst, only moving on to

more complicated laws as we �nd that the simple ones are not adequate to represent the

data. So this approach provides a sort of rationalized \Ockham's Razor."

As appealing as Je�reys' appeal to prior probabilities is, it seems that this answer may

beg the question. Je�reys lays out no clear rule for assigning prior probabilities to the

various hypotheses, as he himself points out (Je�reys 1939; p. 49). But he also points out

a connection with signi�cance tests. He shows that if one makes reasonable assumptions

about the probability model, the simpler law can have greater posterior probability on the

data than the more complex law, even if the prior probability does not favor the simple law.

It is this fact that might lead one to conclude that (1) is a better choice than (2). Je�reys

never stated in so many words that this result was a form of Ockham's razor, although it

seems likely that he was aware of it; the �rst to point out the connection explicitly appears

to have been Jaynes (1979), and independently Smith and Spiegelhalter (1980), who called

it an \automatic Ockham's razor," automatic in the sense that it does not depend on the

prior probabilities of the hypotheses. This razor is not completely automatic, however, in

that it does depend on probabilistic modeling of the e�ect of the complex law on the data.

In Berger and Je�erys (1991) it is observed that even this input can often be avoided,

leading to an objective quanti�cation of Ockham's razor. This objective razor will be

described after reviewing and illustrating the fundamental relationship between Ockham's

razor and Bayesian analysis.

Plagiarism and authorship.

We will regard a hypothesis H

0

as simpler than an alternative H

1

if it makes sharper

predictions about what data will be observed. Usually this will be manifested in the fact

that the more complex hypothesis can accommodate a larger set of potential observations

than the simpler one. This in turn means that the simpler hypothesis is more readily

falsi�ed by arbitrary data. For example, suppose a friend (who has a reputation as a

prankster) o�ers to ip a coin to decide who will perform a little chore: heads he wins,

tails he loses. Knowing our friend's reputation, we might well be concerned that he would
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use trickery (like a two-headed coin) to win the toss. The hypothesis H

0

that the coin has

two heads is, under this understanding, a simpler one than the hypothesis H

1

that the coin

is fair. For if we toss the coin N times, then H

0

will be falsi�ed if even a single tail comes

up, whereas H

1

would be consistent with (i.e., not falsi�ed by) any sequence of heads and

tails.

Suppose, before the coin is ipped, we believed that the hypotheses H

0

and H

1

were

equally likely. Suppose, despite our fears and for the sake of friendship, we agree to the

coin-ip anyway. The coin is tossed, and it indeed comes up heads. Our belief in the

two hypotheses will change as a result of this information, and (by Bayes' theorem) the

posterior probability that we assign to H

0

will now be twice that which we assign to H

1

(Figure 2). However, the evidence that our friend is trying to fool us is not very strong

at this point, perhaps not strong enough to challenge him for a close look at the coin.

However, if this sort of thing happened to us on �ve separate occasions in a row, we would

be rather inclined to think that our friend was playing a joke on us (Figure 3). Even

though both hypotheses are consistent with the data, the simpler one is now considerably

more credible.

This notion of simplicity is characterized by the fact that the simpler hypothesis divides

the set of observable outcomes fD

k

g into a small set that has a relatively high probability

of being observed and a large set that has a relatively small probability of being observed;

whereas the more complex hypothesis tends to spread the prior probability more evenly

amongst all the outcomes. This might be because there are adjustable parameters in the

more complex hypothesis that allows it to accommodate a larger range of data (i.e., it has

more \knobs" to adjust); or, as in the coin-tossing example, because one of the hypotheses

restricts the possible outcomes more than another, as seen in Figure 3.

For example, in the days before computers, when mathematical tables were king, the

compiler of a table had to contend with possible copyright infringement. Copyright law

protects only the expression of an idea, not the idea itself. Since the numbers in a math-

ematical table do not depend upon who computes them, this poses a dilemma for the

compiler. How could one demonstrate to the satisfaction of a court that a table had been

copied, instead of calculated de novo? Clearly, a method was needed to prove beyond a

reasonable doubt that plagiarism had taken place. To solve this problem, compilers fre-

quently took advantage of the fact that numbers ending in the digit 5 can be rounded

either up or down without signi�cantly a�ecting the result of a calculation. By rounding

such numbers randomly, for example by deciding whether to round up or down by the toss

of a coin, instead of using the grade-school rule \round a number ending in 5 to the near-

est even number," the compiler could embed a secret code in the table that identi�ed the

table as his work, while not signi�cantly a�ecting the accuracy of the results that people

would calculate using the table. Anyone who published a table with the same pattern of

roundings could be prosecuted for copyright violation, since the probability of obtaining

the same pattern by chance was very small.

For example, suppose that we had published a table of sines containing 1000 entries.

Of these, about 100 (one in ten) would have originally ended in the digit 5 and would

have been rounded either up or down at random. Two independent compilers of a table

of sines would be very unlikely to come up with the same pattern of rounding, since there

are N = 2

�100

� 10

�30

di�erent ways to round the 5s in the table.

As authors of a table of sines, suppose that we learned that a newly published table

by another author had the same rounding pattern as our own. Let H

0

be the hypothesis

that the second table was plagiarized from the �rst, and H

1

be the hypothesis that the

second table was independently generated and just happened to have the same pattern of
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roundings. On the data D that the rounding patterns are identical, we can calculate that

P (D j H

0

) = 1 and P (D j H

1

) = 2

�100

� 10

�30

. Assuming equal prior probabilities for

the two hypotheses, one �nds from the formulas in Box 1 that the posterior probability

that plagiarism took place di�ers only negligibly from 1.

The reason for this is that H

0

makes a precise prediction about what will be seen, and

is inconsistent with almost all possible data, whereas H

1

is consistent with any data that

might be observed. In essence, H

1

tries to \have its cake and eat it too," hedging its

bets by trying to accommodate all possible data. In contrast, H

0

boldly risks everything

on a single possibility. As a result, when that single possibility turns out to be true, H

0

is rewarded for the greater risk it takes by being given a very high posterior probability

compared to H

1

, even though H

1

is also consistent with the data that we observe and

cannot be falsi�ed by the simple fact that the two tables agreed perfectly.

This simple example does not take into account other factors, for example, the possibility

that a plagiarizer might make errors when copying the table. In such a case, not only

would a table containing the exact pattern of roundings as the �rst be suspect, but also

any table containing a pattern of roundings that di�ered only slightly from the �rst. For

example, the plagiarizer might have calculated some of the numbers in the table himself,

gotten tired, and then copied the rest, or he may have simply been incompetent and

made mistakes. In either case, the basic ideas of the above calculation are not changed

much. For example, suppose that the plagiarizer copied the table, but with a probability

0 < p � 1 of making a mistake. Then the probability that the copied table would agree

exactly with the original table is (1�p)

100

, the probability that they would di�er in exactly

one place is C

100

1

p(1� p)

99

, the probability that they would di�er in exactly two places is

C

100

2

p

2

(1�p)

98

, and so on. (Here, C

m

n

is the binomial coe�cient for the number of ways we

can choose n objects from a set of m objects.) If D is the observation that the two tables

di�er on exactly n out of the 100 digits, then the conditional probability of observing D

given H

0

is no longer 1 but is given by P (D j H

0

) = C

100

n

p

n

(1 � p)

100�n

. Similarly, we

have that P (D j H

1

) = C

100

n

2

�100

. As long as P (D j H

0

) is much greater than P (D j H

1

),

the probability that plagiarism took place remains close to one.

It is now routine for authors of directories, maps, mailing lists, and similar compila-

tions deliberately to introduce innocuous but erroneous entries into the material. When

plagiarism or other unauthorized use of the material takes place, the presence of these

errors in the copied material proves beyond a reasonable doubt that copyright violation

has occurred, and gives the compiler very strong evidence should the case should go to

trial.

At McGill University, chemistry professors David Harpp and James Hogan have used a

similar idea to detect cheating on multiple-choice tests. They wrote a computer program

to compare the answers given by each pair of students in the class and look for a near-

match between correct and incorrect answers. Of course, as teachers they hope and expect

students to know the subject material, so that conclusions about cheating cannot be drawn

from a student's correct answers. But if two students make the same errors, the evidence in

favor of cheating as against accidental duplication of wrong answers can be quite signi�cant.

When two papers with similar patterns of wrong answers are found, Harpp and Hogan's

program then checks the wrong answers to see if there is also a matching pattern amongst

the incorrect responses. If this also looks suspicious, they then check where the two students

were sitting. According to Harpp (1991), \In over �fteen exams I monitored, every suspect

pair sat within one seat of each other." Most people, after considering such evidence, would

agree that there is a very high probability that cheating had taken place. The analysis

of the data in this case is more complicated than in our �rst example, however, because
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di�erent questions will be answered incorrectly with di�ering frequencies, and because

the various incorrect responses (distractors) for each question will similarly draw di�erent

numbers of responses. But there are practical solutions for these complications.

In evolutionary biology, molecular biologists have found striking evidence in support

of the principle of descent with modi�cation within the genetic messages carried by all

organisms. One example is pseudogenes (Max 1986; Watson et. al. 1988). Pseudogenes

can arise in one of several ways, when information from functional genes is duplicated

with errors, such as deletion of critical codes required for gene expression, that render

them nonfunctional. If a pseudogene arises in an organism, then it will be passed on

to its progeny, even though the gene itself has lost its function. Thus, if we look at

di�erent species (such as humans and chimpanzees), and �nd that identical or nearly

identical pseudogenes appear in each, this constitutes very powerful evidence in favor

of the hypothesis that the two di�erent species have a common ancestor. Just as with

cheating on multiple-choice tests, or plagiarism of compiled materials, it is the verbatim or

near-verbatim repetition of a mistake (in this case, the functionless pseudogene containing

hundreds of \letters" of the genetic alphabet) that gives the hypothesis of copying|in

evolutionary terms, descent from a common ancestor|a high posterior probability, when

compared with hypotheses that are not limited by the severe constraints imposed by the

principle of descent with modi�cation.

The motion of Mercury's perihelion.

Ever since Leverrier's work in the early 19th century, astronomers were aware of a

serious problem with the theory of Mercury's motion. Newtonian theory, which had been

extraordinarily successful in accounting for most of the motions in the solar system, had

run up against a small discrepancy in the motion of Mercury that it could not explain

easily. After all of the perturbing e�ects of the planets had been taken into account, there

remained an unexplained residual motion of Mercury's perihelion (the point in its orbit

where the planet was closest to the Sun) in the amount of approximately 43 seconds of arc

per century.

Clearly, it seemed as if something had been overlooked. It was known that physical

mechanisms existed that might explain the discrepancy. One that seemed particularly

appealing in the light of recent experience was the possibility that another planet might

exist, closer to the Sun than Mercury. The reason that this idea was so appealing was

that Leverrier himself, along with the English astronomer Adams, had recently (in 1846)

met with brilliant success by predicting that a previously unknown planet was responsible

for the known discrepancies in the motion of Uranus; not only did Leverrier and Adams

hypothesize that such a planet existed, but they also suggested where it might be found,

and indeed, when J.G. Galle looked for it, the planet Neptune was discovered in the

predicted place. It certainly seemed possible that a similar phenomenon might explain the

anomaly in Mercury's motion.

Indeed, a number of astronomers duly set out to �nd the new planet, dubbed `Vulcan'

in anticipation of its discovery, and some sightings were announced. However, the sightings

could not be con�rmed, and over time interest in the Vulcan hypothesis waned.

Other mechanisms that might explain the anomaly were also proposed. It was suggested

that rings of material around the Sun could, if massive enough, produce the observed e�ect;

or, the Sun itself might be slightly oblate, due to its rotation on its axis; or, �nally, the law

of gravity itself might not be exactly right. For example, the great American astronomer

Simon Newcomb (1895) proposed that the exponent in Newton's law of gravity might not

be exactly 2, but instead might be 2+ �, although other modi�cations to the law of gravity
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were also possible.

All these hypotheses had one characteristic in common: they possessed parameters that

could be adjusted to agree with whatever data on the motion of Mercury existed. In

modern parliance, we would call this a `fudge factor.' For example, the Vulcan hypothesis

had the mass and orbit of the putative planet; the ring hypothesis had the mass and

location of the ring of material; the solar oblateness hypothesis had the unknown amount

of the oblateness; and all the hypotheses that modi�ed Newton's law of gravity had an

adjustable parameter (like Newcomb's �) that could be chosen at will.

Not all the hypotheses were equally probable, however (Roseveare 1982). As we stated

above, sightings of `Vulcan' were never con�rmed, for example. As time went on, the

hypothesis of matter rings of su�cient density became less and less likely (Je�reys 1921)

although some still believed in them (Poor 1921). A solar oblateness of su�cient size prob-

ably would have been detectable with 19th century techniques. However, the hypothesis

that Newton's law of gravity needed an arbitrary adjustment to �t the data could not be

ruled out.

What happened historically is well known. In 1915, Einstein announced his theory of

general relativity, one of the consequences of which was that there should be an excess

advance in the perihelion motion of the planets, that turned out to be largest in the case

of Mercury. After some confusion (Roseveare 1982: pp. 154-159) it soon became clear that

the amount of the advance predicted by general relativity was very close to the unexplained

discrepancy in Mercury's motion. The amazing thing was that the predicted value, which

is 42:98

00

/century using modern values (Nobili & Wills 1986) was not some kind of fudge

factor, but instead was an inevitable consequence of Einstein's theory!

As is well known, Einstein's theory made two other major predictions in addition to

Mercury's perihelion motion (gravitational bending of light, and the slowing down of clocks

in a gravitational �eld). There has been a lively debate over the years as to how important

each has been in convincing scientists that general relativity was the correct theory of

gravity (Brush 1989). In this paper we will not go into this argument, but will instead try

to put ourselves into the mindset of a Bayesian observer in the early 1920s, who is trying

to weigh the evidence of Mercury's motion.

An interesting pair of papers was published in 1921 (Poor, 1921; Je�reys, 1921). Poor

was an astronomer at Columbia University, who had not been convinced that general

relativity was correct and still clung to the matter ring theory. Unfortunately, he also

made some serious errors in his assessment of the evidence as regards the other inner

planets. Je�reys, in response, argued persuasively that the ring theory was not viable

because su�cient matter did not exist. This paper was published before Je�reys made his

major contributions to probability theory, and he does not, ironically, make the Bayesian

argument that we have outlined above. So we will make for Je�reys the argument that he

might have made had he returned to this question some years later.

Poor, in his Table I, gives the �gure a = +41:6

00

� 1:4

00

for the centennial anomalous

motion of Mercury. The uncertainty is certainly a probable error, so the standard error

would be � = 2:0

00

. In his Table II Poor gives �

E

= 42:9

00

as the amount predicted by

Einstein's theory, which is very close to the modern value.

Assuming normality of the measurement error, we can write for the conditional proba-

bility of the data a on the hypothesis that the true value is �, the density

P (a j �) =

1

p

2��

exp

�

�

(a� �)

2

2�

2

�

:

Taking � = �

E

= 42:9

00

under Einstein's theory, E, yields for the conditional probability
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density of the data

P (ajE) =

1

p

2��

exp

�

�

(a� 42:9)

2

2�

2

�

:

Obtaining the conditional probability density of the data under a \fudged Newtonian"

theory, F , is more complicated. If we could determine a prior density P (�jF ) for the true

value of � under F , then the conditional density of the data under F would be

P (ajF ) =

Z

P (aj�)P (�jF )d�: (3)

But what should we choose for P (�jF )?

Note, �rst, that P (�jF ) must not depend in any way upon the data, but should reect

other information about � that is available through consideration of F . Since Newtonian

theory was already well established at the time, and large deviations from Newtonian

theory (� = 0) are less believable than small ones, it would be natural to choose P (�jF )

to be decreasing as � moves away from zero. Also, choosing P (�jF ) to be symmetric is

natural, at least for those theories in which, a priori, the e�ect on � could have been either

positive or negative. A simple density that reects these assumptions is the normal density

with mean zero and standard deviation � ,

P (�jF ) =

1

p

2��

exp

�

�

�

2

2�

2

�

:

It remains only to choose the standard deviation � , which can be interpreted as the

probable magnitude of the e�ect of � that would result under F . In the case at hand, the

only data that can rule out moderate values of � , say several times larger than 43

00

per

century, would be observations of the inner planets, primarily of Venus. Unfortunately,

the eccentricity of Venus' orbit is quite small, and so the perihelion motion of Venus, much

smaller than that of Mercury to begin with, is di�cult to observe accurately. For Earth and

Mars the observations are much more accurate, but the e�ect is much smaller, comparable

to the standard errors. However, the data on the inner planets can rule out a very large

deviation from Newtonian theory, say 100

00

per century or so for Mercury. A value for �

of, say, 50

00

per century for Mercury's orbit seems reasonable and in agreement with the

data on the orbits of the other inner planets. Since these are just rough calculations in

any case, let us therefore take � = 50

00

.

Using equation (3), the conditional density of the data under F can now be computed

to be

P (ajF ) =

1

p

2�(�

2

+ �

2

)

exp

�

�

a

2

2(�

2

+ �

2

)

�

:

Recalling that a = 41:6; � = 2:0, and � = 50, we can then estimate the degree to which

the data favor E over F by the Bayes factor (see Box 1)

B =

P (ajE)

P (ajF )

=

p

1 + �

2

exp

�

�

D

2

E

2

�

exp

�

D

2

F

2(1 + �

2

)

�

; (4)

where D

E

= (a � �

E

)=� = �0:65; D

F

= a=� = 20:8 and � = �=� = 25:0. The Bayes

factor is to be interpreted as the odds provided by the data for E compared with F ; in

particular, when B is greater than 1, the data favor E, and when B is less than 1 they

favor F (Figure 4).
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Plugging in the numbers, we obtain B = 28:6, which is moderately strong evidence in

favor of the Einstein hypothesis. Indeed, as shown in Figure 5, the lowest that the odds

ratio can be is B = 27:76, no matter what value of � we adopt. Ironically, the data that

Poor himself provides in his paper against general relativity favor the Einstein hypothesis

over the \fudged Newtonian" hypothesis. If Poor had made a Bayesian calculation, he

might not have come to the conclusion that he did!

Discussion of the relativity example.

Equation (4) contains several factors. The exponential factors reect the \�t" of the

data to the hypotheses. For example, D

E

measures how far the data are from the Einstein

value|in this case, less than one standard deviation, so that the corresponding exponen-

tial factor is near one. Similarly, the data are consistent with the \fudged Newtonian"

hypothesis, resulting in the second exponential factor also being near one.

In this example, nearly all of B is due to the factor

p

1 +

�

�

2

, which measures the ratio

between the spread of the prior distribution for the \fudged Newtonian" hypothesis to that

of the data. Since this spread is relatively large, it means that the \fudged Newtonian"

hypothesis has to waste a considerable amount of prior probability on hypothetical values

of � that are never observed. Gull (1988) calls this factor the \Ockham factor."

It is this Ockham factor that allows us to choose between the two hypotheses. The reason

for the Ockham factor is simply that the \fudged Newtonian" hypothesis has an additional

degree of freedom that allows it to accommodate a much larger range of hypothetical data

than does the Einstein hypothesis. This means that it must spread its risk over a larger

parameter space in order not to miss the region supported by the data. In this sense, it is

a less simple theory than the Einstein hypothesis. The Einstein hypothesis makes a sharp

prediction about Mercury's perihelion motion, which depends only on the known values

of the constant of gravity and the speed of light. If we do not measure a value for the

perihelion motion that is close to the predicted value, we can reject the Einstein theory.

This is not possible for the \fudged Newtonian" hypothesis.

An objective Ockham's razor.

The above analysis required choice of P (�jF ), the prior density of � under the fudged

Newtonian hypothesis. It was argued that this density should be symmetric about � = 0

and decreasing in j�j; the particular choice of a normal N(0; 50

2

) density was then made.

This last step was rather arbitrary and, in general, can be di�cult. It is thus of consid-

erable interest that a quanti�cation of Ockham's razor can be given that is independent

of the particular choice of P (�jF ). Indeed, in Berger and Je�erys (1991), the following is

established: for any P (�jF ) that is symmetric and decreasing in j�j,

B =

P (ajE)

P (ajF )

�

r

2

�

h

jD

F

j+

p

2 ln(jD

F

j+ 1:2)

i

exp

�

�

D

2

E

2

�

: (5)

For the Mercury example, the right hand side of (5) is 15.04, so that the evidence in favor

of Einstein is at least 15 to 1 for any reasonable P (�jF ).

Note that equation (5) actually de�nes an objective Ockham's razor for the following

generic situation: we observe data a � N(�; �

2

), �

2

given, and wish to compare the

\simple" model H

0

:� = �

E

with the \complex" model, H

1

, which has � freely varying

with � = 0 being the previous \standard." Then (5) provides an objective lower bound

for the odds of H

0

to H

1

provided by the data. Of course, as with any lower bound, (5) is

useless if the right hand side happens to be small; there is then no recourse but to attempt

speci�cation of P (�jH

1

). Often, however, the bound will be large enough so that one can

con�dently choose H

0

without having to specify P (�jH

1

).
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Parsimonious model selection.

In choosing between two or more models, one of which is (essentially) true, the Bayesian

ideas that we have discussed (see also Box 1) provide excellent mechanisms for selection. A

somewhat di�erent situation that is frequently encountered, however, is that of �tting an

empirical model to data|a model that is not \true," but that will be used for prediction

of the phenomenon under study. This can arise either when the true model is unknown or

when the true model is too complex to be computationally useful.

Selecting among possible empirical models in this setting involves quite di�erent con-

siderations. Accuracy of future predictions is, of course, a major concern, but simplicity of

the model for computational or interpretational reasons is also highly relevant. This latter

factor can lead to a \parsimonious Ockham's razor," which chooses the simpler model for

such practical reasons, not because it is \true." Although Bayesian analysis can also be

crucial in understanding model selection in this scenario, the relevant Bayesian techniques

are considerably di�erent and discussion would take us too far a�eld.

Conclusions.

Ockham's razor, far from being merely an ad hoc principle, can under many practical

situations in science be justi�ed as a consequence of Bayesian inference. Bayesian analysis

can shed new light on what the notion of the \simplest" hypothesis consistent with the

data actually means. We have seen three di�erent ways in which Ockham's razor can be

interpreted in Bayesian terms: in the choice of the prior probabilities of hypotheses, using

scienti�c experience to judge that simpler hypotheses are more likely to be correct; as a

consequence of the fact that a hypothesis with fewer adjustable parameters will automati-

cally have an enhanced posterior probability, due to the fact that the predictions it makes

are sharp; and in the choice of parsimonious empirical models. All these are in agreement

with our intuitive notion of what makes a theory powerful and believable.
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Box 1: Bayes' Theorem

The foundation of this paper is Bayes' theorem, proved by the Rev. Thomas Bayes

(1763). At its core, Bayes' theorem represents a way|Bayesians would argue the most

consistent way|of incorporating new data into our understanding of the world. Let

H

1

; H

2

; : : : ; H

n

be n mutually exclusive and exhaustive hypotheses, and let P (H

i

j I)

represent our personal probability that the hypothesis H

i

is true, given all the relevant

prior information I that is available to us. Let D represent some new piece of data that

comes to our attention. Then Bayes' theorem tells us that we should update our personal

probabilities according to the rule

P (H

i

j D&I) =

P (D j H

i

&I)P (H

i

j I)

P (D j I)

;

where P (D j H

i

&I) is the probability that we would observe D, given that H

i

is true and

assuming the information I, and P (H

i

j D&I) is our updated personal probability that H

i

is true, given both the old information I and the new information D. The denominator is

the total probability of observing the data, summed over all hypotheses:

P (D j I) =

X

j

P (D j H

j

&I)P (H

j

j I)

When considering only two hypotheses, it is often more convenient to work with the

odds ratio 
, which is just the ratio of the two probabilities. Thus, given H

0

and H

1

, we

�nd that the odds 


0=1

(D&I) in favor of H

0

as against H

1

after considering both D and

I are given by




0=1

(D&I) =

P (H

0

j D&I)

P (H

1

j D&I)

=

P (D j H

0

&I)

P (D j H

1

&I)

P (H

0

j I)

P (H

1

j I)

= B

0=1

(D&I)


0=1

(I)

In this formula, B

0=1

is the Bayes factor of H

0

on H

1

. Note that it does not depend on

the prior probabilities of the hypotheses, which are involved only in the prior odds 


0=1

(I).

Thus the Bayes factor measures the amount by which the new data favors H

0

against H

1

.

This separation of the e�ect of the data from the prior probabilities is important for

scienti�c communication.
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Box 2: Controversies

Bayes' theorem has had a long and controversial history, which is too extensive to review

here. See Berger (1985) or Edwards, Lindman, and Savage (1963) for general discussion

of these controversies. After many years of eclipse, Bayesian methods have undergone

a revival, particularly after the publication of the inuential book, Theory of Probability

(Je�reys, 1939) .

There are two main points of contention between Bayesians and traditional (frequentist)

statisticians. The �rst is philosophical: Some argue that since only one of the hypotheses

H

i

is true, it makes no sense to talk about the \probability" that H

j

is true. This has

a certain logic if one interprets probabilities as frequencies; but Bayesians also use the

term \probability" to refer to the degree of plausibility of a hypothesis, and indeed, this

is the way most working scientists use the term. Bayes' theorem thus becomes a way of

calculating how the observation of new data increases the plausibility of some hypotheses

at the expense of others. The Bayesian use of the word \probability of a hypothesis" is in

fact the natural one for working scientists.

The second point is that there are no universally accepted ways of assigning the prior

probabilities (\priors") P (H

i

j I) that Bayes' theorem requires. This means that di�erent

scientists, faced with the same data, may come to di�erent conclusions. The traditional

approach to statistics, such as the use of signi�cance tests of hypotheses, sought to overcome

this perceived problem of subjectivity.

Bayesians have several responses to this. One school (see Edwards, Lindman, and Sav-

age, 1963, for an introduction) believes that there is nothing inherently wrong with subjec-

tivism, and indeed, that the frequentist approach is really no more objective, although it

has successfully disguised this fact (Berger and Berry, 1988). Subjectivist Bayesians point

out that it is quite common for scientists to disagree about the plausibility of hypothe-

ses, and contend that this is a natural, and indeed inescapable state of a�airs. Further-

more, frequentists can give the appearance of objectivity only by answering the \wrong"

questions|for instance, providing the probability of a \rejection region" given the hypoth-

esis is true, when a scientist really wants to know the probability that the hypothesis is

true given the data.

Another school (Laplace, 1812, Je�reys, 1939) has developed methods of choosing and

utilizing \objective" prior distributions for a wide class of problems. With problems for

which such are available, Bayesian analysis can claim to be as objective as any statistical

methods. Note, however, that for the model selection problem we have discussed, objective

prior distributions cannot be utilized; thus it was necessary to specify P (�jF ) in the

Mercury perihilion problem to determine the Bayes factor, although an objective lower

bound was available. See Berger and Je�erys (1991) for further discussion.
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Figure Captions

Figure 1: The dots are data relating time to the distance a falling object travels. The

curves are the best quadratic �t to the data (solid line), and an exact 7-th degree polynomial

�t to the data (dashed line). Though the quadratic �t is not exact, it is more appealing

because of its simplicity.

Figure 2: The probability of ipping zero or one head for a two-headed coin (hatched)

and a fair coin (white). If tails is ipped, the hypothesis that the coin is two-headed is

falsi�ed; however, if heads is ipped, the hypothesis that the coin is two-headed is favored

by odds of 2:1.

Figure 3: The probability of ipping n heads in �ve tries, as a function of the number of

heads that have been tossed, for a two-headed coin (hatched) and a fair coin (white). Note

how heavily favored is the two-headed hypothesis when we actually observe only heads.

Figure 4: The odds ratio, B, of the Einstein to the \Fudged Newton" hypotheses, as

a function of � , the \guess" as to the standard deviation of � under the Fudged Newton

hypothesis. Note that the lowest the odds can be is 27:76.

Figure 5: The probability densities of the data, a, under the Fudged Newton and

Einstein hypotheses. For the actual data a = 41:6, the odds in favor of Einstein's model

are B = d

2

=d

1

= 28:6=1. Because the Einstein hypothesis makes a sharp prediction, it is

tall and narrow in the region near its prediction, which causes it to be favored when the

observed data are near the predicted value. (The scales are somewhat altered for clearer

presentation.)


