Below are slides (.pdf), R code (.R) extracted from the code that generated the slides, and YouTube links to recorded videos.

## Chapter slide set files

If the files are ever not available here, you can find them here.

### Probability

 Topic slides code videos Probability pdf R Full Discrete distributions pdf R Discrete vs continuous random variables Discrete random variables Bernoulli Binomial Poisson Continuous distributions pdf R Continuous random variables Uniform Normal Central limit theorem pdf R Central Limit Theorem Approximating normal distributions Astronomy example Multiple random variables pdf R Multiple random variables

### Inference

 Topic slides code videos data Statistics pdf R Field of statistics Estimators Properties of estimators Graphical statistics Likelihood pdf R Statistical models Likelihood Maximum likelihood estimators Bayesian parameter estimation pdf R Bayesian parameter estimation Exponential distribution pdf R Exponential Gamma distribution pdf R Gamma Inverse gamma distribution pdf R Inverse_gamma T distribution pdf R T distribution Normal model pdf R Normal model yield.csv Normal model example Sampling distribution pdf R Sampling distribution Confidence intervals pdf R Confidence intervals Statistical hypotheses pdf Statistical hypotheses p-values pdf R p-values Hypothesis tests pdf R hypothesis tests T-tests pdf R t-tests Correspondence: p-values and CIs pdf R Correspondence: p-values and CIs What p-values don’t mean pdf R what p-values mean Posterior model probability pdf R One-sided alternatives Two-sided alternatives p-values vs posterior probabilities Comparing probabilities pdf R Comparing two probabilities Comparing three or more probabilities Comparing means pdf R Comparing two means Comparing three or more means Comparing means with equal variances Multiple comparisons pdf R

### Regression

 Topic slides code video Simple linear regression pdf R Simple linear regression pdf R Choosing explanatory variables pdf R Uncertainty and prediction intervals Regression diagnostics pdf R Regression diagnostics in R} Using logarithms in regression pdf R Logarithms an example Categorical explanatory variables pdf R Binary variables Categorical variables Multiple regression pdf R Multiple Regression Interactions Interpreting p-values pdf R Interpreting p-values ANOVA and F-tests pdf R ANOVA F-tests Contrasts pdf R Contrasts Potato Scab Example Experimental design pdf R Completely Randomized Design Randomized Complete Block Design Two-way ANOVA pdf R Analysis of a Completely Randomized Design Analysis of Unbalanced or Incomplete Designs Analysis for Optimality

============ updated to here =================

### Supplementary materials

 Topic slides code Logistic regression pdf R Poisson regression pdf R Random effects pdf R

### Supplementary topics

 Topic Source Handouts Data Management Set01.Rnw Set01.pdf Data Set02.Rnw Set02.pdf Model comparison SetS04.Rnw SetS04.pdf Random forests SetS05.Rnw SetS05.pdf