The posts generates some spatial data on a lattice which can be used to evaluate
areal models or point-referenced models on a lattice.
The code is a modified version of the code in ?CARBayes::S.CARleroux
.
library ( "MASS" )
library ( "dplyr" )
## Warning: package 'dplyr' was built under R version 3.4.2
##
## Attaching package: 'dplyr'
## The following object is masked _by_ '.GlobalEnv':
##
## slice
## The following objects are masked from 'package:Hmisc':
##
## combine, src, summarize
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library ( "ggplot2" )
set.seed ( 20171108 )
sessionInfo ()
## R version 3.4.1 (2017-06-30)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: OS X El Capitan 10.11.6
##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
<<<<<<< Updated upstream
## [1] dplyr_0.7.4 xtable_1.8-2 Hmisc_4.0-3
## [4] Formula_1.2-2 survival_2.41-3 lattice_0.20-35
## [7] MCMCpack_1.4-0 MASS_7.3-47 coda_0.19-1
## [10] dlm_1.1-4 ggplot2_2.2.1.9000 plyr_1.8.4
## [13] knitr_1.17
##
## loaded via a namespace (and not attached):
## [1] reshape2_1.4.2 splines_3.4.1 colorspace_1.3-2
## [4] htmltools_0.3.6 base64enc_0.1-3 rlang_0.1.2
## [7] foreign_0.8-69 glue_1.1.1 RColorBrewer_1.1-2
## [10] bindrcpp_0.2 bindr_0.1 stringr_1.2.0
## [13] MatrixModels_0.4-1 munsell_0.4.3 gtable_0.2.0
## [16] htmlwidgets_0.9 evaluate_0.10.1 labeling_0.3
## [19] latticeExtra_0.6-28 SparseM_1.77 quantreg_5.33
## [22] htmlTable_1.9 highr_0.6 Rcpp_0.12.13
## [25] acepack_1.4.1 scales_0.5.0.9000 backports_1.1.1
## [28] checkmate_1.8.4 mcmc_0.9-5 gridExtra_2.3
## [31] digest_0.6.12 stringi_1.1.5 grid_3.4.1
## [34] tools_3.4.1 magrittr_1.5 lazyeval_0.2.0
## [37] tibble_1.3.4 cluster_2.0.6 pkgconfig_2.0.1
## [40] Matrix_1.2-11 data.table_1.10.4 assertthat_0.2.0
## [43] R6_2.2.2 rpart_4.1-11 nnet_7.3-12
## [46] compiler_3.4.1
=======
## [1] knitr_1.17 ggplot2_2.2.1 bindrcpp_0.2 dplyr_0.7.4 CARBayes_5.0
## [6] Rcpp_0.12.13 MASS_7.3-47
##
## loaded via a namespace (and not attached):
## [1] gtools_3.5.0 spam_2.1-1 splines_3.4.0
## [4] lattice_0.20-35 colorspace_1.3-2 expm_0.999-2
## [7] htmltools_0.3.6 yaml_2.1.14 MCMCpack_1.4-0
## [10] rlang_0.1.2 foreign_0.8-69 glue_1.1.1
## [13] sp_1.2-5 bindr_0.1 plyr_1.8.4
## [16] stringr_1.2.0 MatrixModels_0.4-1 dotCall64_0.9-04
## [19] CARBayesdata_2.0 munsell_0.4.3 gtable_0.2.0
## [22] coda_0.19-1 evaluate_0.10.1 labeling_0.3
## [25] SparseM_1.77 quantreg_5.33 spdep_0.6-13
## [28] backports_1.1.0 scales_0.4.1 gdata_2.18.0
## [31] truncnorm_1.0-7 deldir_0.1-14 mcmc_0.9-5
## [34] digest_0.6.12 stringi_1.1.5 gmodels_2.16.2
## [37] grid_3.4.0 rprojroot_1.2 tools_3.4.0
## [40] LearnBayes_2.15 magrittr_1.5 lazyeval_0.2.0
## [43] tibble_1.3.4 tidyr_0.6.3 pkgconfig_2.0.1
## [46] Matrix_1.2-10 shapefiles_0.7 matrixcalc_1.0-3
## [49] assertthat_0.2.0 rmarkdown_1.6 R6_2.2.2
## [52] boot_1.3-20 nlme_3.1-131 compiler_3.4.0
>>>>>>> Stashed changes
Construct spatial lattice.
Grid <- expand.grid ( x.easting = 1 : 10 , x.northing = 1 : 10 )
n <- nrow ( Grid )
Simulate data
# Explanatory variables and coefficients
x1 <- rnorm ( n ) %>% round ( 2 )
x2 <- rnorm ( n ) %>% round ( 2 )
# Spatial field
distance <- as.matrix ( dist ( Grid ))
omega <- MASS :: mvrnorm ( n = 1 ,
mu = rep ( 0 , n ),
Sigma = 0.4 * exp ( -0.1 * distance ))
eta <- x1 + x2 + omega
d <- Grid %>%
mutate ( Y_normal = rnorm ( n , eta , sd = 0.1 ) %>% round ( 2 ),
Y_pois = rpois ( n , exp ( eta )),
trials = 10 ,
Y_binom = rbinom ( n = n , size = trials , prob = 1 / ( 1 + exp ( - eta ))),
x1 = x1 ,
x2 = x2 )
Spatial surface
ggplot ( d %>% mutate ( omega = omega ),
aes ( x = x.easting , y = x.northing )) +
geom_raster ( aes ( fill = omega )) +
theme_bw ()
Normal data
ggplot ( d , aes ( x = x.easting , y = x.northing , fill = Y_normal )) +
geom_raster () +
theme_bw ()
Poisson data
ggplot ( d , aes ( x = x.easting , y = x.northing , fill = Y_pois )) +
geom_raster () +
theme_bw ()
Binomial data
ggplot ( d , aes ( x = x.easting , y = x.northing , fill = Y_binom / trials )) +
geom_raster () +
theme_bw ()
For use in future posts.
save ( d , file = "data/spatial20171108.rda" )
Please enable JavaScript to view the comments powered by Disqus.
blog comments powered by