This post looks at the autocorrelation in a simple DLM when using JAGS, which samples each state individually, and FFBS, which samples the states jointly.
This is put within the context of a local level model with unknown observation and evolution variance.
Simulate the data
require ( methods , quietly = TRUE )
require ( dlm , quietly = TRUE )
##
## Attaching package: 'dlm'
## The following object is masked from 'package:ggplot2':
##
## %+%
require ( rjags , quietly = TRUE )
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'rjags'
# Simulate data
ll = dlmModPoly ( 1 , dV = 1 , dW = .01 , m0 = 0 , C0 = 1 )
o = dlmForecast ( ll , 100 , sampleNew = 1 )
Fit the model using JAGS (the model looks terrible, but it should work).
jags_ll = "
model {
for (i in 2:n) {
y[i-1] ~ dnorm(theta[i], tauV)
theta[i] ~ dnorm(theta[i-1], tauW)
}
theta[1] ~ dnorm(0,1)
tauV ~ dgamma(1,1)
tauW ~ dgamma(1,1)
}
"
dat = list ( y = as.numeric ( o $ newObs [[ 1 ]]))
dat $ n = length ( dat $ y ) +1
m = jags.model ( textConnection ( jags_ll ), dat ,
n.adapt = 2000 )
## Error in jags.model(textConnection(jags_ll), dat, n.adapt = 2000): could not find function "jags.model"
res = coda.samples ( m , c ( "tauV" , "tauW" , "theta" ), n.iter = 2000 )
## Error in coda.samples(m, c("tauV", "tauW", "theta"), n.iter = 2000): could not find function "coda.samples"
Fit the model using the dlm package in R.
joint = dlmGibbsDIG ( o $ newObs [[ 1 ]], ll ,
a.y = 1 , b.y = 1 ,
a.theta = 1 , b.theta = 1 ,
n.sample = 1000 , thin = 1 )
##
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|==== | 7%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|====== | 10%
|
|======= | 10%
|
|======= | 11%
|
|======= | 12%
|
|======== | 12%
|
|======== | 13%
|
|========= | 13%
|
|========= | 14%
|
|========= | 15%
|
|========== | 15%
|
|========== | 16%
|
|=========== | 16%
|
|=========== | 17%
|
|=========== | 18%
|
|============ | 18%
|
|============ | 19%
|
|============= | 19%
|
|============= | 20%
|
|============= | 21%
|
|============== | 21%
|
|============== | 22%
|
|=============== | 22%
|
|=============== | 23%
|
|=============== | 24%
|
|================ | 24%
|
|================ | 25%
|
|================= | 25%
|
|================= | 26%
|
|================= | 27%
|
|================== | 27%
|
|================== | 28%
|
|=================== | 28%
|
|=================== | 29%
|
|=================== | 30%
|
|==================== | 30%
|
|==================== | 31%
|
|==================== | 32%
|
|===================== | 32%
|
|===================== | 33%
|
|====================== | 33%
|
|====================== | 34%
|
|====================== | 35%
|
|======================= | 35%
|
|======================= | 36%
|
|======================== | 36%
|
|======================== | 37%
|
|======================== | 38%
|
|========================= | 38%
|
|========================= | 39%
|
|========================== | 39%
|
|========================== | 40%
|
|========================== | 41%
|
|=========================== | 41%
|
|=========================== | 42%
|
|============================ | 42%
|
|============================ | 43%
|
|============================ | 44%
|
|============================= | 44%
|
|============================= | 45%
|
|============================== | 45%
|
|============================== | 46%
|
|============================== | 47%
|
|=============================== | 47%
|
|=============================== | 48%
|
|================================ | 48%
|
|================================ | 49%
|
|================================ | 50%
|
|================================= | 50%
|
|================================= | 51%
|
|================================= | 52%
|
|================================== | 52%
|
|================================== | 53%
|
|=================================== | 53%
|
|=================================== | 54%
|
|=================================== | 55%
|
|==================================== | 55%
|
|==================================== | 56%
|
|===================================== | 56%
|
|===================================== | 57%
|
|===================================== | 58%
|
|====================================== | 58%
|
|====================================== | 59%
|
|======================================= | 59%
|
|======================================= | 60%
|
|======================================= | 61%
|
|======================================== | 61%
|
|======================================== | 62%
|
|========================================= | 62%
|
|========================================= | 63%
|
|========================================= | 64%
|
|========================================== | 64%
|
|========================================== | 65%
|
|=========================================== | 65%
|
|=========================================== | 66%
|
|=========================================== | 67%
|
|============================================ | 67%
|
|============================================ | 68%
|
|============================================= | 68%
|
|============================================= | 69%
|
|============================================= | 70%
|
|============================================== | 70%
|
|============================================== | 71%
|
|============================================== | 72%
|
|=============================================== | 72%
|
|=============================================== | 73%
|
|================================================ | 73%
|
|================================================ | 74%
|
|================================================ | 75%
|
|================================================= | 75%
|
|================================================= | 76%
|
|================================================== | 76%
|
|================================================== | 77%
|
|================================================== | 78%
|
|=================================================== | 78%
|
|=================================================== | 79%
|
|==================================================== | 79%
|
|==================================================== | 80%
|
|==================================================== | 81%
|
|===================================================== | 81%
|
|===================================================== | 82%
|
|====================================================== | 82%
|
|====================================================== | 83%
|
|====================================================== | 84%
|
|======================================================= | 84%
|
|======================================================= | 85%
|
|======================================================== | 85%
|
|======================================================== | 86%
|
|======================================================== | 87%
|
|========================================================= | 87%
|
|========================================================= | 88%
|
|========================================================== | 88%
|
|========================================================== | 89%
|
|========================================================== | 90%
|
|=========================================================== | 90%
|
|=========================================================== | 91%
|
|=========================================================== | 92%
|
|============================================================ | 92%
|
|============================================================ | 93%
|
|============================================================= | 93%
|
|============================================================= | 94%
|
|============================================================= | 95%
|
|============================================================== | 95%
|
|============================================================== | 96%
|
|=============================================================== | 96%
|
|=============================================================== | 97%
|
|=============================================================== | 98%
|
|================================================================ | 98%
|
|================================================================ | 99%
|
|=================================================================| 99%
|
|=================================================================| 100%
Plot traceplots and autocorrelation for the middle state.
par ( mfrow = c ( 2 , 2 ))
plot ( as.numeric ( res [[ 1 ]][ 1001 : 2000 , 52 ]), type = "l" )
## Error in plot(as.numeric(res[[1]][1001:2000, 52]), type = "l"): object 'res' not found
acf ( res [[ 1 ]][, 52 ])
## Error in as.ts(x): object 'res' not found
plot ( joint $ theta [ 52 , 1 ,], type = "l" )
acf ( joint $ theta [ 52 , 1 ,])
The elephant in the room here is in the implementation since the JAGS code runs quite a bit faster than the dlm code.
Of course, the dlm code is written to handle much more complicated DLMs.
Please enable JavaScript to view the comments powered by Disqus.
blog comments powered by